看动画轻松理解「递归」与「动态规划」

在学习「数据结构算法」的过程中,因为人习惯了平铺直叙的思维方式,所以「递归」与「动态规划」这种带循环概念(绕来绕去)的往往是相对比较难以理解的两个抽象知识点。

程序员小吴打算使用动画的形式来帮助理解「递归」,然后通过「递归」的概念延伸至理解「动态规划」算法思想。

什么是递归

先下定义:递归算法是一种直接或者间接调用自身函数或者方法的算法。

通俗来说,递归算法的实质是把问题分解成规模缩小的同类问题的子问题,然后递归调用方法来表示问题的解。它有如下特点:

1. 一个问题的解可以分解为几个子问题的解

2. 这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样

3. 存在递归终止条件,即必须有一个明确的递归结束条件,称之为递归出口

递归动画

递归动画

通过动画一个一个特点来进行分析。

1.一个问题的解可以分解为几个子问题的解

子问题就是相对与其前面的问题数据规模更小的问题。

在动图中①号问题(一块大区域)划分为②号问题,②号问题由两个子问题(两块中区域)组成。

2. 这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样

「①号划分为②号」与「②号划分为③号」的逻辑是一致的,求解思路是一样的。

3. 存在递归终止条件,即存在递归出口

把问题分解为子问题,把子问题再分解为子子问题,一层一层分解下去,不能存在无限循环,这就需要有终止条件。

①号划分为②号,②号划分为③号,③号划分为④号,划分到④号的时候每个区域只有一个不能划分的问题,这就表明存在递归终止条件。

从递归的经典示例开始 一.数组求和

数组求和

数组求和

1Sum(arr[0...n-1]) = arr[0] + Sum(arr[1...n-1])

后面的 Sum 函数要解决的就是比前一个 Sum 更小的同一问题。

1Sum(arr[1...n-1]) = arr[1] + Sum(arr[2...n-1])

以此类推,直到对一个空数组求和,空数组和为 0 ,此时变成了最基本的问题。

1Sum(arr[n-1...n-1] ) = arr[n-1] + Sum([])
二.汉诺塔问题

汉诺塔(Hanoi Tower)问题也是一个经典的递归问题,该问题描述如下:

汉诺塔问题:古代有一个梵塔,塔内有三个座A、B、C,A座上有64个盘子,盘子大小不等,大的在下,小的在上。有一个和尚想把这个盘子从A座移到B座,但每次只能允许移动一个盘子,并且在移动过程中,3个座上的盘子始终保持大盘在下,小盘在上。

两个盘子

两个盘子

三个盘子

三个盘子

① 如果只有 1 个盘子,则不需要利用 B 塔,直接将盘子从 A 移动到 C 。

② 如果有 2 个盘子,可以先将盘子 2 上的盘子 1 移动到 B ;将盘子 2 移动到 C ;将盘子 1 移动到 C 。这说明了:可以借助 B 将 2 个盘子从 A 移动到 C ,当然,也可以借助 C 将 2 个盘子从 A 移动到 B 。

③ 如果有 3 个盘子,那么根据 2 个盘子的结论,可以借助 C 将盘子 3 上的两个盘子从 A 移动到 B ;将盘子 3 从 A 移动到 C ,A 变成空座;借助 A 座,将 B 上的两个盘子移动到 C 。
  

④ 以此类推,上述的思路可以一直扩展到 n 个盘子的情况,将将较小的 n-1个盘子看做一个整体,也就是我们要求的子问题,以借助 B 塔为例,可以借助空塔 B 将盘子A上面的 n-1 个盘子从 A 移动到 B ;将A 最大的盘子移动到 C , A 变成空塔;借助空塔 A ,将 B 塔上的 n-2 个盘子移动到 A,将 C 最大的盘子移动到 C, B 变成空塔。。。

三.爬台阶问题

问题描述:

一个人爬楼梯,每次只能爬1个或2个台阶,假设有n个台阶,那么这个人有多少种不同的爬楼梯方法?

先从简单的开始,以 4 个台阶为例,可以通过每次爬 1 个台阶爬完楼梯:

每次爬 1 个台阶

每次爬 1 个台阶

可以通过先爬 2 个台阶,剩下的每次爬 1 个台阶爬完楼梯

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpyjpf.html