即时填充
Take消费时,即时检查剩余可用slot量(tail - cursor),如小于设定阈值,则补全空闲slots。阈值可通过paddingFactor来进行配置,请参考Quick Start中CachedUidGenerator配置。
周期填充
通过Schedule线程,定时补全空闲slots。可通过scheduleInterval配置,以应用定时填充功能,并指定Schedule时间间隔。
Leaf是美团基础研发平台推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨的著名的一句话:“There are no two identical leaves in the world”,世间不可能存在两片相同的叶子。
Leaf 也提供了两种ID生成的方式,分别是 Leaf-segment 数据库方案和 Leaf-snowflake 方案。
Leaf-segment 数据库方案Leaf-segment 数据库方案,是在上文描述的在使用数据库的方案上,做了如下改变:
原方案每次获取ID都得读写一次数据库,造成数据库压力大。改为利用proxy server批量获取,每次获取一个segment(step决定大小)号段的值。用完之后再去数据库获取新的号段,可以大大的减轻数据库的压力。
各个业务不同的发号需求用 biz_tag字段来区分,每个biz-tag的ID获取相互隔离,互不影响。如果以后有性能需求需要对数据库扩容,不需要上述描述的复杂的扩容操作,只需要对biz_tag分库分表就行。
数据库表设计如下:
CREATE TABLE `leaf_alloc` ( `biz_tag` varchar(128) NOT NULL DEFAULT '' COMMENT '业务key', `max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id', `step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长', `description` varchar(256) DEFAULT NULL COMMENT '业务key的描述', `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间', PRIMARY KEY (`biz_tag`) ) ENGINE=InnoDB;原来获取ID每次都需要写数据库,现在只需要把step设置得足够大,比如1000。那么只有当1000个号被消耗完了之后才会去重新读写一次数据库。读写数据库的频率从1减小到了1/step,大致架构如下图所示:
同时Leaf-segment 为了解决 TP999(满足千分之九百九十九的网络请求所需要的最低耗时)数据波动大,当号段使用完之后还是会hang在更新数据库的I/O上,TP999 数据会出现偶尔的尖刺的问题,提供了双buffer优化。
简单的说就是,Leaf 取号段的时机是在号段消耗完的时候进行的,也就意味着号段临界点的ID下发时间取决于下一次从DB取回号段的时间,并且在这期间进来的请求也会因为DB号段没有取回来,导致线程阻塞。如果请求DB的网络和DB的性能稳定,这种情况对系统的影响是不大的,但是假如取DB的时候网络发生抖动,或者DB发生慢查询就会导致整个系统的响应时间变慢。
为了DB取号段的过程能够做到无阻塞,不需要在DB取号段的时候阻塞请求线程,即当号段消费到某个点时就异步的把下一个号段加载到内存中,而不需要等到号段用尽的时候才去更新号段。这样做就可以很大程度上的降低系统的 TP999 指标。详细实现如下图所示:
采用双buffer的方式,Leaf服务内部有两个号段缓存区segment。当前号段已下发10%时,如果下一个号段未更新,则另启一个更新线程去更新下一个号段。当前号段全部下发完后,如果下个号段准备好了则切换到下个号段为当前segment接着下发,循环往复。
每个biz-tag都有消费速度监控,通常推荐segment长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响。
每次请求来临时都会判断下个号段的状态,从而更新此号段,所以偶尔的网络抖动不会影响下个号段的更新。
对于这种方案依然存在一些问题,它仍然依赖 DB的稳定性,需要采用主从备份的方式提高 DB的可用性,还有 Leaf-segment方案生成的ID是趋势递增的,这样ID号是可被计算的,例如订单ID生成场景,通过订单id号相减就能大致计算出公司一天的订单量,这个是不能忍受的。
Leaf-snowflake方案Leaf-snowflake方案完全沿用 snowflake 方案的bit位设计,对于workerID的分配引入了Zookeeper持久顺序节点的特性自动对snowflake节点配置 wokerID。避免了服务规模较大时,动手配置成本太高的问题。
Leaf-snowflake是按照下面几个步骤启动的:
启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。