机器学习在高德起点抓路中的应用实践 (2)

机器学习应用于起点抓路项目,第一个问题就是真值数据的获取。用户在某个位置A发起路线规划请求,由于定位精度限制,我们无法确认其实际所在位置,但如果用户在发起规划请求附近有实走信息,可以将实走信息匹配到路网生成一条运动轨迹,通过这条轨迹我们就可以获取到请求定位点所处的实际道路。

 

我们针对高德地图的导航请求数据进行相关挖掘,将用户实走与路线规划信息相结合,得到了请求与真值一一映射的数据集。

特征数据

在起点抓路模型中,我们提取了三大类特征用于构建样本集,分别是定位点相关特征、道路自身特征以及定位点与道路之间的组合特征。

机器学习在高德起点抓路中的应用实践

 

特征处理是特征工程的核心部分,不同项目在进行特征预处理时会有不同,需要根据实际业务场景进行特殊化处理,往往依赖于专业领域经验。起点抓路项目中,我们针对定位特征进行了样本去重、异常值处理、错误值修正及映射等数据清洗工作。

 

3.模型选择

在目标问题定义中,我们将起点抓路剖析为搜索排序问题,而机器学习的ranking技术,主要包括point-wise、pair-wise、list-wise三大类。

 

根据起点抓路业务特点,我们采用了list-wise,其learning to rank框架具有以下特征:

 

输入信息是同一路线规划请求对应的所有道路构成的多特征向量(即一个query)。

输出信息是对应请求(即同一query)特征向量的打分序列。

对于打分函数,我们采用了树模型。

 

我们选择NDCG(Normalized Discounted Cumulative Gain 归一化累积折算信息增益值)作为模型评价指标,NDCG是一种综合考虑模型排序结果和真实序列之间关系的指标,也是常用的衡量排序结果的指标。

 

4.模型训练及效果评估

我们抽取了一定时间段内的请求信息,按照步骤2中描述的方式获取到对应真值及特征数据,打标构建了样本集,将其划分为训练集与测试集,训练模型并查看结果是否符合预期。

 

评估模型效果,我们将测试集的请求分别用人工规则及机器学习模型进行抓路,并分别与真值进行对比,统计准确率。

 

对比结果,针对随机抽取的请求,模型与人工规则抓路结果差异率为10%,这10%的差异群体中,模型抓路准确率比人工规则提升40%,效果显著。

 

写在最后

以上我们介绍了大数据和机器学习在起点抓路方面的一些应用,项目的成功上线也验证了机器学习在提升准确率、优化流程等方面可以发挥重要作用。

 

未来,我们希望能够将现有模型场景继续细化,寻找新的收益点,从数据和模型两个角度共同探索,持续优化机器学习抓路效果。

机器学习在高德起点抓路中的应用实践

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpyydd.html