数据分析与机器学习之线性回归与逻辑回归(六) (9)

#梯度下降实现原理: 对theta1与theta0进行求偏导值 #对theta1值进行求偏导值 def partial_cost_theta1(theta0,theta1,x,y): h = theta0 + theta1*x #预测函数 diff = (h-y) *x # 对theta1进行求偏导 (h(x) - y) * x partial = diff.sum()/(x.shape[0]) #进行求和并除以样本数量 return partial partial1 = partial_cost_theta1(0,5,pga.distance,pga.accuracy) print(partial1) #对theta0进行求偏导值 def partial_cost_theta0(theta0,theta1,x,y): h = theta0 + theta1*x #预测函数 diff = (h-y) #对theta0求偏导 (h(x) - y) partial = diff.sum() / (x.shape[0]) #进行求和并除以样本数量 return partial partial0 = partial_cost_theta0(1,1,pga.distance,pga.accuracy) print(partial0) #输出 5.5791338540719 1.0000000000000104

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wspfjj.html