ElasticSearch实战系列二: ElasticSearch的DSL语句使用教程---图文详解

Elasticsearch提供了基于JSON的完整查询DSL(特定于域的语言)来定义查询。将查询DSL视为查询的AST(抽象语法树),它由两种子句组成:

叶子查询子句:
叶查询子句中寻找一个特定的值在某一特定领域,如 match,term或 range查询。这些查询可以自己使用

复合查询子句
复合查询子句包装其他叶查询或复合查询,并用于以逻辑方式组合多个查询(例如 bool或dis_max查询),或更改其行为(例如 constant_score查询)。
查询子句的行为会有所不同,具体取决于它们是在 查询上下文中还是在过滤器上下文中使用

我们在使用ElasticSearch的时候,避免不了使用DSL语句去查询,就像使用关系型数据库的时候要学会SQL语法一样。如果我们学习好了DSL语法的使用,那么在日后使用和使用Java Client调用时候也会变得非常简单。

ElasticSearch DSL 语句使用

这里我们先来介绍下DSL 语句简单的使用,从最常用的增删改查开始!

一、新增数据

ElasticSearch可以直接新增数据,只要你指定了index(索引库名称)和type(类型)即可。在新增的时候你可以自己指定主键ID,也可以不指定,由 ElasticSearch自身生成。

新增数据命令示例:

POST test1/_doc/1 { "uid" : "1234", "phone" : "12345678909", "message" : "qq", "msgcode" : "1", "sendtime" : "2019-03-14 01:57:04" }

kinaba示例:

在这里插入图片描述


**注: POST test1/_doc/1 这是指定主键ID为1,如果POST test1/_doc 的话,那么便是es自身生成ES语句。**

这里我们还可以通过 GET test1/ 或 GET test1/_settings和GET test1/_mapping查看该index的状态,也就是 setting(设置选项) 和mapping(数据结构)。

在这里插入图片描述

二、创建索引库

在上述示例中,我们通过直接通过创建数据从而创建了索引库,但是没有创建索引库而通过ES自身生成的这种并不友好,因为它会使用默认的配置,字段结构都是text(text的数据会分词,在存储的时候也会额外的占用空间),分片和索引副本采用默认值,默认是5和1,ES的分片数在创建之后就不能修改,除非reindex(下面会讲到),所以这里我们还是指定数据模板进行创建。

这里先简单介绍一下ES的数据结构,以下的数据结构为ES的6.x版本。

核心数据类型
text 和 keyword

数值数据类型
long,integer,short,byte,double,float,half_float,scaled_float

日期数据类型
date

布尔数据类型
boolean

二进制数据类型
binary

范围数据类型
integer_range,float_range,long_range,double_range,date_range

复杂数据类型编辑

对象数据类型
object 用于单个JSON对象

嵌套数据类型
nested 用于JSON对象数组

地理数据类型编辑

地理位置数据类型
geo_point 纬度/经度积分

地理形状数据类型
geo_shape 用于多边形等复杂形状

专业数据类型编辑

IP数据类型
ip 用于IPv4和IPv6地址

完成数据类型
completion 提供自动完成建议

令牌计数数据类型
token_count 计算字符串中令牌的数量
mapper-murmur3
murmur3 在索引时计算值的哈希并将其存储在索引中
mapper-annotated-text
annotated-text 索引包含特殊标记的文本(通常用于标识命名实体)

渗滤器类型
接受来自query-dsl的查询

join 数据类型
为同一索引内的文档定义父/子关系

别名数据类型
为现有字段定义别名。

多字段编辑
为不同的目的以不同的方式对同一字段建立索引通常很有用。例如,一个string字段可以映射为text用于全文搜索的字段,也可以映射为keyword用于排序或聚合的字段。或者,您可以使用standard分析仪, english分析仪和 french分析仪索引文本字段。
这是多领域的目的。大多数数据类型通过fields参数支持多字段。

上面介绍的字段介绍虽然比较复杂,但是我们常用的几个类型也就是这几种 text、keyword、byte、short、integer、long、float、double、boolean、date,其中text和keyword都是string类型,选择区分很简单,需要进行分词用text,不需要并且进行排序或聚合的可以用keyword。

关于ES的数据结构就到这里了,我们来进行索引库的创建吧!

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wssddg.html