关系抽取之远程监督算法 (7)

 

关系抽取之远程监督算法

  (四)实验细节

  1、数据集和评估方法

  知识图谱为Freebase,外部文档库为NYT。把NYT文档库中2005-2006年的句子作为训练集,2007年的句子作为测试集。

  评估方法沿用第一篇论文中的方法,留出法和人工校验相结合。

  2、词嵌入和调参

  预训练的词向量方面,本文用Skip-Gram模型和NYT文档库训练了50维的词向量。

  位置特征嵌入使用随机初始化的向量,维度为5。

  调参方面,PCNNs网络结构中有两个参数比较重要:卷积核的滑动窗口大小和卷积核的个数。本文使用网格搜索,最终确定滑动窗口为3,卷积核个数为230。

  模型的其他参数如下:

关系抽取之远程监督算法

  3、模型评估结果

  (1)对留出法和人工校验法的说明

  使用留出法和人工校验法来评估模型的效果。这里对这两种评估方法进行补充说明:

  留出法的做法是把Freebase中一半的实体对用于训练,一半的实体对用于测试。多分类模型训练好之后,对外部文档库NYT中的测试集进行预测,得到测试集中实体对的关系标签。如果新发现的实体对有N个,其中有n个出现在Freebase的测试集中,那么准确率为n/N,而不在Freebase测试集中的实体对就视为不存在关系。可是由于Freebase中的实体对太少了,新发现的、不在Freebase里的实体对并非真的不存在关系,这就会出现假负例(False Negatives)的问题,低估了准确率。

  所以人工校验的方法是对留出法的一个补充,对于那些新发现的、不在Freebase测试集中的实体对(一个实体不在或者两个实体都不在)进行检查,计算查准率。所以留出法和人工校验要评估的两个新实体对集合是没有交集的。具体做法是从这些新实体对中选择概率值最高的前N个,然后人工检查其中关系标签正确的实体对,如果有n个,那么查准率为n/N。

  (2)卷积神经网络与人工构造特征的对比

  首先把PCNNs结合多实例学习的远程监督模型(记为PCNNs+MIL),与人工构造特征的远程监督算法(记为Mintz)和多实例学习的算法(记为MultiR和MIML)进行比较。

  从下面的实验结果中可以看到,无论是查准率还是查全率,PCNNs+MIL模型都显著优于其他模型,这说明用卷积神经网络作为自动特征抽取器,可以有效降低人工构造特征和NLP工具提取特征带来的误差。

关系抽取之远程监督算法

   (3)分段最大池化和多实例学习的有效性

  将分段最大池化和普通的最大池化的效果进行对比(PCNNs VS CNNs),将结合多实例学习的卷积网络与单纯的卷积网络进行对比(PCNNs+MIL VS PCNNs)。

  可以看到,分段最大池化比普通的最大池化效果更好,表明分段最大池化可以抽取更丰富的结构特征。把多实例学习加入到卷积网络中,效果也有一定的提升,表明多实例学习可以缓解样本标注错误的问题。

关系抽取之远程监督算法

  (四)评价

  这篇论文中,分段最大池化的奇思妙想来自于传统人工构造特征的思想,而多实例学习的引入缓解了第一篇论文中的样本错误标注问题。这篇论文出来以后是当时的SOTA。

  不足之处在于,多实例学习仅从包含某个实体对的多个句子中,挑出一个最可能的句子来训练,这必然会损失大量的信息。所以有学者提出用句子级别的注意力机制来解决这个问题。

四、句子级别的注意力机制

  第三篇论文是《Neural Relation Extraction with Selective Attention over Instances》,这篇论文首次把注意力机制引入到了关系抽取的远程监督算法中,刷新了当时的SOTA。论文作者中有知乎网红刘知远老师。

  (一)论文的贡献

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wssxxj.html