关系抽取之远程监督算法 (9)

关系抽取之远程监督算法

  3、选择性注意力机制的效果

  句子编码器分别采用CNN和PCNN的网络结构,PCNN+ONE表示PCNN结合多实例学习的模型,PCNN+ATT表示论文中的选择性注意力模型,PCNN+AVE表示对各句子求算术平均的模型(每个句子的注意力得分相同)。

  实验结果表明,无论是CNN还是PCNN,加入注意力机制的模型在查准率和查全率上,都显著优于其他模型。

关系抽取之远程监督算法

   论文还有其他更细致的实验,欲知详情,请自行翻看论文。

  (四)评价

  这篇论文把注意力机制和CNN句子编码器结合,用来解决多实例学习存在的遗漏信息问题,更好地缓解了远程监督算法中的样本错误标注问题。

  注意力机制在NLP任务中的效果是有目共睹的,PCNN+ATT的模型看起来非常漂亮,那么有什么改进方向呢?

  开头我们说了,关系抽取可以分为流水线式抽取(Pipline)和联合抽取(Joint Extraction)两种,流水线式抽取就是把关系抽取的任务分为两个步骤:首先做实体识别,再抽取出两个实体的关系;而联合抽取的方式就是一步到位,同时抽取出实体和关系。

  因此上面介绍的三篇论文中的模型都属于流水线式抽取的方法,实体识别和关系抽取的模型是分开的,那么实体识别中的误差会影响到关系抽取的效果。而联合抽取用一个模型直接做到了实体识别和关系抽取,是一个值得研究的方向。

 

 

参考资料:

1、《Speech and Language Processing》(Third Edition draft)第17章

2、《cs224u: Relation extraction with distant supervision》

3、《Distant supervision for relation extraction without labeled data》

4、《Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks》

5、《Neural Relation Extraction with Selective Attention over Instances》

6、《Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme》

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wssxxj.html