这一篇TCP总结请收下 (2)

现在不同的机器上的应用进程之间可以独立通信了,那么我们就可以在计算机网络上开发出形形式式的应用:如web网页的http,文件传输ftp等等。这一层称为应用层

应用层还可以进一步拆分出表示层、会话层,但他们的本质特点都没有改变:完成具体的业务需求 。和下面的四层相比,他们并不是必须的,可以归属到应用层中。

最后对计网分层进行小结:

image.png

最底层物理层,负责两个机器之间通过硬件的直接通信;

数据链路层使用硬件地址在局域网中进行寻址,实现局域网通信;

网络层通过抽象IP地址实现主机之间的逻辑通信;

运输层在网络层的基础上,对数据进行拆分,实现应用进程的独立网络通信;

应用层在运输层的基础上,根据具体的需求开发形形式式的功能。

这里需要注意的是,分层并不是在物理上的分层,而是逻辑上的分层。通过对底层逻辑的封装,使得上层的开发可以直接依赖底层的功能而无需理会具体的实现,简便了开发。

这种分层的思路,也就是责任链设计模式,通过层层封装,把不同的职责独立起来,更加方便开发、维护等等。okHttp中的拦截器设计模式,也是这种责任链模式。

运输层

本文主要是讲解TCP,这里需要增加一些运输层的知识。

本质:提供进程通信

yqs3gx.md.png

在运输层之下的网络层,是不知道该数据包属于哪个进程,他只负责数据包的接收与发送。运输层则负责接收不同进程的数据交给网络层,同时把网络层的数据拆分交给不同的进程。从上往下汇聚到网络层,称为多路复用,从下往上拆分,称为多路拆分

运输层的表现,受网络层的限制。这很好理解,网络层是运输层的底层支持。所以运输层是无法决定自己带宽、时延等的上限。但可以基于网络层开发更多的特性:如可靠传输。网络层只负责尽力把数据包从一端发送到另一端,而不保证数据可以到达且完整。

底层实现:socket

前面讲到,最简单的运输层协议,就是提供进程之间的独立通信 ,但底层的实现,是socket之间的独立通信 。在网络层中,IP地址是一个主机逻辑地址,而在运输层中,socket是一个进程的逻辑地址;当然,一个进程可以拥有多个socket。应用进程可以通过监听socket,来获取这个socket接受到的消息。

举个例子来理解socket。如下图

这一篇TCP总结请收下

每一个主机可以创建很多个socket来接收信息。如主机A的微信进程,想要发送给主机B的微信,那么他只需要发送给主机B的socketC,主机B的微信就会从socketC中取到消息。(当然实际的流程不是这样的,我们的消息需要经过微信后台服务器,这里只是举例子)

同理,主机B的QQ,想要发送消息给主机A的QQ,那么只需要把消息发送给socketB,主机A的QQ就可以拿到消息了。

socket并不是一个实实在在的东西,而是运输层抽象出来的一个对象。运输层增加了端口这个概念,来区分不同的socket。端口可以理解为一个主机上有很多的网络通信口,每个端口都有一个端口号,端口的数量由运输层协议确定。

不同的运输层协议对socket有不同的定义方式。在UDP协议中,使用目标IP+目标端口号来定义一个socket;在TCP中使用目标IP+目标端口号+源IP+源端口号来定义一个socket。我们只需要在运输层报文的头部附加上这些信息,目标主机就会知道我们要发送给哪个socket,对应监听该socket的进程就可获得信息。

运输层协议

运输层的协议就是大名鼎鼎的TCP和UDP。其中,UDP是最精简的运输层协议,只实现了进程间的通信;而TCP在UDP的基础上,实现了可靠传输、流量控制、拥塞控制、面向连接等等特性,同时也更加复杂。

当然除此之外,还有更多更优秀的运输层协议,但目前广为使用的,就是TCP和UDP。UDP在后面也会总结到。

TCP协议首部

TCP协议,表现在报文上,就是会在应用层传输下来的数据前附加上一个TCP首部,这个首部附加了TCP信息,先来整体看一下这个首部的结构:

这一篇TCP总结请收下

这张图是来自我大学老师的课件, 非常好用,所以一直拿来学习。最下面部分表示了报文之间的关系,TCP数据部分就是应用层传下来的数据。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wsxxgs.html