ARM Linux ld指令详解

我们对每个c或者汇编文件进行单独编译,但是不去连接,生成很多.o 的文件,这些.o文件首先是分散的,我们首先要考虑的如何组合起来;其次,这些.o文件存在相互调用的关系;再者,我们最后生成的bin文件是要在硬件中运行的,每一部分放在什么地址都要有仔细的说明。我觉得在写makefile的时候,最为重要的就是ld的理解,下面说说我的经验:

首先,要确定我们的程序用没有用到标准的c库,或者一些系统的库文件,这些一般是在操作系统之上开发要注意的问题,这里并不多说,熟悉在Linux编程的人,基本上都会用ld命令;这里,我们从头开始,直接进行汇编语言的连接。

我们写一个汇编程序,控制GPIO,从而控制外接的LED,代码如下;

.text

.global _start

_start:

LDR R0,=0x56000010 @GPBCON寄存器
   
    MOV R1,# 0x00000400
    str R1,[R0]
   
    LDR R0,=0x56000014
    MOV R1,#0x00000000
   
    STR R1,[R0]
   
    MAIN_LOOP:
            B MAIN_LOOP

代码很简单,就是一个对io口进行设置然后写数据。我们看它是如何编译的,注意我们这里使用的不是arm-linux-gcc而是arm-elf- gcc,二者之间没有什么比较大的区别,arm-linux-gcc可能包含更多的库文件,在命令行的编译上面是没有区别。我们来看是如何编译的:

arm-elf-gcc -g -c -o led_On.o led_On.s  首先纯编译不连接

arm-elf-ld  -Ttext 0x00000000 -g led_On.o -o led_on_elf

用Ttext指明我们程序存储的地方,这里生成的是elf文件,还不是我们真正的bin,但是可以借助一些工具可以进行调试。然后:

arm-elf-objcopy -O binary -S led_on_elf led_on.bin  

生成bin文件。

-T选项是ld命令中比较重要的一个选项,可以用它直接指明代码的代码段、数据段、博士生、

段,对于复杂的连接,可以专门写一个脚本来告诉编译器如何连接。

-Ttext   addr

-Tdata  addr

-Tbss     addr

arm-elf-ld  -Ttext 0x00000000 -g led_On.o -o led_on_elf  ,运行地址为0x00000000,由于没有指明数据段和bss,他们会默认的依次放在后面。相同的代码不同的Ttext,你可以对比一下他们之间会变的差异,ld会自动调整跳转的地址。

第二个概念:section,section可以理解成一块,例如像c里面的一个子函数,就是一个section,链接器ld把object文件中的每个section都作为一个整体,为其分配运行的地址(memory layout),这个过程就是重定位(relocation);最后把所有目标文件合并为一个目标文件。

链接通过一个linker script来控制,这个脚本描述了输入文件的sections到输出文件的映射,以及输出文件的memory layout。

因此,linker总会使用一个linker script,如果不特别指定,则使用默认的script;可以使用‘-T’命令行选项来指定一个linker script。

*映像文件的输入段与输出段

linker把多个输入文件合并为一个输出文件。输出文件和输入文件都是目标文件(object file),输出文件通常被称为可执行文件(executable)。

每个目标文件都有一系列section,输入文件的section称为input section,输出文件的section则称为output section。

一个section可以是loadable的,即输出文件运行时需要将这样的section加载到memory(类似于RO&RW段);也可以是 allocatable的,这样的section没有任何内容,某些时候用0对相应的memory区域进行初始化(类似于ZI段);如果一个 section既非loadable也非allocatable,则它通常包含的是调试信息。

每个loadable或 allocatable的output section都有两个地址,一是VMA(virtual memory address),是该section的运行时域地址;二是LMA(load memory address),是该section的加载时域地址。

可以通过objdump工具附加'-h'选项来查看目标文件中的sections。

*简单的Linker script

(1) SECTIONS命令:

The SECTIONS command tells the linker how to map input sections into output sections, and how to place the output sections in memory.

命令格式如下:

SECTIONS

{

sections-command

sections-command

......

}

其中sections-command可以是ENTRY命令,符号赋值,输出段描述,也可以是overlay描述。

(2) 地址计数器‘.’(location counter):

该符号只能用于SECTIONS命令内部,初始值为‘0’,可以对该符号进行赋值,也可以使用该符号进行计算或赋值给其他符号。它会自动根据SECTIONS命令内部所描述的输出段的大小来计算当前的地址。

(3) 输出段描述(output section description):

前面提到在SECTIONS命令中可以作输出段描述,描述的格式如下:

section [address] [(type)] : [AT(lma)]

{

output-section-command

output-section-command

...

} [>region] [AT>lma_region] [:phdr :phdr ...] [=fillexp]

很多附加选项是用不到的。其中的output-section-command又可以是符号赋值,输入段描述,要直接包含的数据值,或者某一特定的输出段关键字。


*linker script 实例

==============================

OUTPUT_ARCH(arm)

ENTRY(_start)

SECTIONS {

. = 0xa3f00000;

__boot_start = .;

.start ALIGN(4) : {

*(.text.start)

}


    .setup ALIGN(4) : {

setup_block = .;

*(.setup)

setup_block_end = .;

}


    .text ALIGN(4) : {

*(.text)

}


    .rodata ALIGN(4) : {

*(.rodata)

}

.data ALIGN(4) : {

*(.data)

}


    .got ALIGN(4) : {

*(.got)

}

__boot_end = .;


    .bss ALIGN(16) : {

bss_start = .;

*(.bss)

*(COMMON)

bss_end = .;

}


    .comment ALIGN(16) : {

*(.comment)

}

stack_point = __boot_start + 0x00100000;

loader_size = __boot_end - __boot_start;

setup_size = setup_block_end - setup_block;

}

============================= 

在SECTIONS命令中的类似于下面的描述结构就是输出段描述:

.start ALIGN(4) : {

*(.text.start)

}

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wwfpsj.html