2. Linux 驱动
2.1 FrameBuffer
Linux是工作在保护模式下,所以用户态进程是无法像DOS那样使用显卡BIOS里提供的中断调用来实现直接写屏,Lin仿显卡的功能,将显ux抽象出FrameBuffer这个设备来供用户态进程实现直接写屏。Framebuffer机制模卡硬件结构抽象掉,可以通过Framebuffer的读写直接对显存进行操作。用户可以将Framebuffer看成是显示内存的一个映像,将其映射到进程地址空间之后,就可以直接进行读写操作,而写操作可以立即反应在屏幕上。这种操作是抽象的,统一的。用户不必关心物理显存的位置、换页机制等等具体细节。这些都是由Framebuffer设备驱动来完成的。
在Linux系统下,FrameBuffer的主要的结构如图所示。Linux为了开发FrameBuffer程序的方便,使用了分层结构。fbmem.c处于Framebuffer设备驱动技术的中心位置。它为上层应用程序提供系统调用,也为下一层的特定硬件驱动提供接口;那些底层硬件驱动需要用到这儿的接口来向系统内核注册它们自己。
fbmem.c 为所有支持FrameBuffer的设备驱动提供了通用的接口,避免重复工作。下将介绍fbmem.c主要的一些数据结构。
2.2 数据结构
2.2.1 Linux FrameBuffer的数据结构
在FrameBuffer中,fb_info可以说是最重要的一个结构体,它是Linux为帧缓冲设备定义的驱动层接口。它不仅包含了底层函数,而且还有记录设备状态的数据。每个帧缓冲设备都与一个fb_info结构相对应。fb_info的主要成员如下
struct fb_info {
int node;
struct fb_var_screeninfo var; /* Current var */
struct fb_fix_screeninfo fix; /* Current fix */
struct fb_videomode *mode; /* current mode */
struct fb_ops *fbops;
struct device *device; /* This is the parent */
struct device *dev; /* This is this fb device */
char __iomem *screen_base; /* Virtual address */
unsigned long screen_size; /* Amount of ioremapped VRAM or 0 */
…………
};
其中node成员域标示了特定的FrameBuffer,实际上也就是一个FrameBuffer设备的次设备号。fb_var_screeninfo结构体成员记录用户可修改的显示控制器参数,包括屏幕分辨率和每个像素点的比特数。fb_var_screeninfo中的xres定义屏幕一行有多少个点, yres定义屏幕一列有多少个点, bits_per_pixel定义每个点用多少个字节表示。其他域见以下代码注释。
struct fb_var_screeninfo {
__u32 xres; /* visible resolution */
__u32 yres;
__u32 xoffset; /* offset from virtual to visible */
__u32 yoffset; /* resolution */
__u32 bits_per_pixel; /* bits/pixel */
__u32 pixclock; /* pixel clock in ps (pico seconds) */
__u32 left_margin; /* time from sync to picture */
__u32 right_margin; /* time from picture to sync */
__u32 hsync_len; /* length of horizontal sync */
__u32 vsync_len; /* length of vertical sync */
…………
};
在fb_info结构体中,fb_fix_screeninfo中记录用户不能修改的显示控制器的参数,如屏幕缓冲区的物理地址,长度。当对帧缓冲设备进行映射操作的时候,就是从fb_fix_screeninfo中取得缓冲区物理地址的。
struct fb_fix_screeninfo {
char id[16]; /* identification string eg "TT Builtin" */
unsigned long smem_start; /* Start of frame buffer mem (physical address) */
__u32 smem_len; /* Length of frame buffer mem */
unsigned long mmio_start; /* Start of Mem Mapped I/O(physical address) */
__u32 mmio_len; /* Length of Memory Mapped I/O */
…………
};
fb_info还有一个很重要的域就是fb_ops。它是提供给底层设备驱动的一个接口。通常我们编写字符驱动的时候,要填写一个file_operations结构体,并使用register_chrdev()注册之,以告诉Linux如何操控驱动。当我们编写一个FrameBuffer的时候,就要依照Linux FrameBuffer编程的套路,填写fb_ops结构体。这个fb_ops也就相当于通常的file_operations结构体。
struct fb_ops {
int (*fb_open)(struct fb_info *info, int user);
int (*fb_release)(struct fb_info *info, int user);
ssize_t (*fb_read)(struct file *file, char __user *buf, size_t count, loff_t *ppos);
ssize_t (*fb_write)(struct file *file, const char __user *buf, size_t count,
loff_t *ppos);
int (*fb_set_par)(struct fb_info *info);
int (*fb_setcolreg)(unsigned regno, unsigned red, unsigned green,
unsigned blue, unsigned transp, struct fb_info *info);
int (*fb_setcmap)(struct fb_cmap *cmap, struct fb_info *info)
int (*fb_mmap)(struct fb_info *info, struct vm_area_struct *vma);
……………
}
上面的结构体,根据函数的名字就可以看出它的作用,这里不在一一说明。下图给出了Linux FrameBuffer的总体结构,作为这一部分的总结。
图2.2
2.2.2 S3C2410中LCD的数据结构
在S3C2410的LCD设备驱动中,定义了s3c2410fb_info来标识一个LCD设备,结构体如下:
struct s3c2410fb_info {
struct fb_info *fb;
struct device *dev;
struct s3c2410fb_mach_info *mach_info;
struct s3c2410fb_hw regs; /* LCD Hardware Regs */
dma_addr_t map_dma; /* physical */
u_char * map_cpu; /* virtual */
u_int map_size;
/* addresses of pieces placed in raw buffer */
u_char * screen_cpu; /* virtual address of buffer */
dma_addr_t screen_dma; /* physical address of buffer */
…………
};
成员变量fb指向我们上面所说明的fb_info结构体,代表了一个FrameBuffer。dev则表示了这个LCD设备。map_dma,map_cpu,map_size这三个域向了开辟给LCD DMA使用的内存地址。screen_cpu,screen_dma指向了LCD控制器映射的内存地址。另外regs标识了LCD控制器的寄存器。
struct s3c2410fb_hw {
unsigned long lcdcon1;
unsigned long lcdcon2;
unsigned long lcdcon3;
unsigned long lcdcon4;
unsigned long lcdcon5;
};
这个寄存器和硬件的寄存器一一对应,主要作为实际寄存器的映像,以便程序使用。
这个s3c2410fb_info中还有一个s3c2410fb_mach_info成员域。它存放了和体系结构相关的一些信息,如时钟、LCD设备的GPIO口等等。这个结构体定义为
struct s3c2410fb_mach_info {
unsigned char fixed_syncs; /* do not update sync/border */
int type; /* LCD types */
int width; /* Screen size */
int height;
struct s3c2410fb_val xres; /* Screen info */
struct s3c2410fb_val yres;
struct s3c2410fb_val bpp;
struct s3c2410fb_hw regs; /* lcd configuration registers */
/* GPIOs */
unsigned long gpcup;
unsigned long gpcup_mask;
unsigned long gpccon;
unsigned long gpccon_mask;
…………
};
图2.3
上图表示了S3C2410驱动的整体结构,反映了结构体之间的相互关系
2.3 主要代码结构以及关键代码分析
2.3.1 FrameBuffer驱动的统一管理
fbmem.c实现了Linux FrameBuffer的中间层,任何一个FrameBuffer驱动,在系统初始化时,必须向fbmem.c注册,即需要调用register_framebuffer()函数,在这个过程中,设备驱动的信息将会存放入名称为registered_fb数组中,这个数组定义为
struct fb_info *registered_fb[FB_MAX];
int num_registered_fb;
它是类型为fb_info的数组,另外num_register_fb则存放了注册过的设备数量。
我们分析一下register_framebuffer的代码。
int register_framebuffer(struct fb_info *fb_info)
{
int i;
struct fb_event event;
struct fb_videomode mode;
if (num_registered_fb == FB_MAX) return -ENXIO; /* 超过最大数量 */
num_registered_fb++;
for (i = 0 ; i < FB_MAX; i++)
if (!registered_fb[i]) break; /* 找到空余的数组空间 */
fb_info->node = i;
fb_info->dev = device_create(fb_class, fb_info->device,
MKDEV(FB_MAJOR, i), "fb%d", i); /* 为设备建立设备节点 */
if (IS_ERR(fb_info->dev)) {
…………
} else{
fb_init_device(fb_info); /* 初始化改设备 */
}
…………
return 0;
}
从上面的代码可知,当FrameBuffer驱动进行注册的时候,它将驱动的fb_info结构体记录到全局数组registered_fb中,并动态建立设备节点,进行设备的初始化。注意,这里建立的设备节点的次设备号就是该驱动信息在registered_fb存放的位置,即数组下标i 。在完成注册之后,fbmem.c就记录了驱动的fb_info。这样我们就有可能实现fbmem.c对全部FrameBuffer驱动的统一处理。