python -m pdb myscript.py #注意这会重启myscript.py
可以在程序中这么设置断点:
import pdb; pdb.set_trace()
可以修改变量的值,但是要注意,前面加上!比如要修改final的值,应该这样!final="newvalue"
支持的命令:
p 打印变量
n next
step 细点运行
c continue
l list
a args 打印当前函数的参数
condition bpnumber [condition]
clear/disable/enable 清除/禁用/使能断点
q quit
python profiler性能分析
一种方法:
if __name__ == "__main__":
import profile
profile.run("foo()")
另一种命令行方法:python -m profile prof1.py
profile的统计结果分为ncalls, tottime, percall, cumtime, percall, filename:lineno(function)等若干列:
ncalls
函数的被调用次数
tottime
函数总计运行时间,除去函数中调用的函数运行时间
percall
函数运行一次的平均时间,等于tottime/ncalls
cumtime
函数总计运行时间,含调用的函数运行时间
percall
函数运行一次的平均时间,等于cumtime/ncalls
filename:lineno(function)
函数所在的文件名,函数的行号,函数名
用pstats自定义报表
profile解 决了我们的一个需求,还有一个需求:以多种形式查看输出,我们可以通过 profile的另一个类Stats来解决。在这里我们需要引入一个模块pstats,它定义了一个类Stats,Stats的构造函数接受一个参数—— 就是profile的输出文件的文件名。Stats提供了对profile输出结果进行排序、输出控制等功能,如我们把前文的程序改为如下:
# …略
if __name__ == "__main__":
import profile
profile.run("foo()", "prof.txt")
import pstats
p = pstats.Stats("prof.txt")
p.sort_stats("time").print_stats()
引入pstats之后,将profile的输出按函数占用的时间排序
Stats有若干个函数,这些函数组合能给我们输出不同的profile报表,功能非常强大。下面简单地介绍一下这些函数:
strip_dirs()
用以除去文件名前名的路径信息。
add(filename,[…])
把profile的输出文件加入Stats实例中统计
dump_stats(filename)
把Stats的统计结果保存到文件
sort_stats(key,[…])
最重要的一个函数,用以排序profile的输出
reverse_order()
把Stats实例里的数据反序重排
print_stats([restriction,…])
把Stats报表输出到stdout
print_callers([restriction,…])
输出调用了指定的函数的函数的相关信息
print_callees([restriction,…])
输出指定的函数调用过的函数的相关信息
这里最重要的函数就是sort_stats和print_stats,通过这两个函数我们几乎可以用适当的形式浏览所有的信息了,下面来详细介绍一下。