之前介绍的分类的目标变量都是标称型数据,接下来我们将介绍连续型的数据并且作出预测,本篇介绍的是线性回归,接下来引入局部平滑技术,能够更好地拟合数据
本篇我们主要讨论欠拟合情况下的缩减的技术,探讨偏差和方差的概念。
优点:结构易于理解,计算上不复杂
缺点:对非线性的数据拟合不好
适合数值型和标称型数据
有回归方程,求回归方程的回归系数的过程就是回归,一旦有了回归系数,再给定了输入,做预测就非常容易。具体做法就是回归系数乘以输入数据,再将结果全部加到一起,就得到预测值
机器学习算法的基本任务就是预测,预测目标按照数据类型可以分为两类:一种是标称型数据(通常表现为类标签),另一种是连续型数据(例如房价或者销售量等等)。针对标称型数据的预测就是我们常说的分类,针对数值型数据的预测就是回归了。这里有一个特殊的算法需要注意,逻辑回归(logistic regression)是一种用来分类的算法,那为什么又叫“回归”呢?这是因为逻辑回归是通过拟合曲线来进行分类的。也就是说,逻辑回归只不过在拟合曲线的过程中采用了回归的思想,其本质上仍然是分类算法
这个简单的式子就叫回归方程,其中0.7和0.19称为回归系数,面积和房子的朝向称为特征。有了这些概念,我们就可以说,回归实际上就是求回归系数的过程。在这里我们看到,房价和面积以及房子的朝向这两个特征呈线性关系,这种情况我们称之为线性回归。当然还存在非线性回归,在这种情况下会考虑特征之间出现非线性操作的可能性(比如相乘或者相除),由于情况有点复杂,不在这篇文章的讨论范围之内。
简便起见,我们规定代表输入数据的矩阵为XX (维度为m*n,m为样本数,n为特征维度),回归系数向量为 θθ(维度为n*1)。对于给定的数据矩阵XX ,其预测结果由:Y=XθY=Xθ 这个式子给出。我们手里有一些现成的x和y作为训练集,那么如何根据训练集找到合适的回归系数向量θθ是我们要考虑的首要问题,一旦找到θθ,预测问题就迎刃而解了。在实际应用中,我们通常认为能带来最小平方误差的θθ就是我们所要寻找的回归系数向量。平方误差指的是预测值与真实值的差的平方。采用平方这种形式的目的在于规避正负误差的互相抵消。所以,我们的目标函数如下所示: