二十道面试题每个题你能讲个十分钟恭喜你在上海至少16k(Java中级开发) (16)

Redis会将数据集的快照dump到dump.rdb文件中。此外,我们也可以通过配置文件来修改Redis服务器dump快照的频率,在打开6379.conf文件之后,我们搜索save,可以看到下面的配置信息:

save 900 1              #在900秒(15分钟)之后,如果至少有1个key发生变化,则dump内存快照。

save 300 10            #在300秒(5分钟)之后,如果至少有10个key发生变化,则dump内存快照。

save 60 10000        #在60秒(1分钟)之后,如果至少有10000个key发生变化,则dump内存快照。

AOF(全持久化的方式):把每一次数据变化都通过write()函数将你所执行的命令追加到一个appendonly.aof文件里面,Redis默认是不支持这种全持久化方式的,需要在配置文件(redis.conf)中将appendonly no改成appendonly yes

优点:数据安全性高,对日志文件的写入操作采用的是append模式,因此在写入过程中即使出现宕机问题,也不会破坏日志文件中已经存在的内容;

缺点:对于数量相同的数据集来说,aof文件通常要比rdb文件大,因此rdb在恢复大数据集时的速度大于AOF;

AOF持久化配置:

在Redis的配置文件中存在三种同步方式,它们分别是:

appendfsync always     #每次有数据修改发生时都会都调用fsync刷新到aof文件,非常慢,但是安全;

appendfsync everysec  #每秒钟都调用fsync刷新到aof文件中,很快,但是可能丢失一秒内的数据,推荐使用,兼顾了速度和安全;

appendfsync no          #不会自动同步到磁盘上,需要依靠OS(操作系统)进行刷新,效率快,但是安全性就比较差;

二种持久化方式区别:

AOF在运行效率上往往慢于RDB,每秒同步策略的效率是比较高的,同步禁用策略的效率和RDB一样高效;

如果缓存数据安全性要求比较高的话,用aof这种持久化方式(比如项目中的购物车);

如果对于大数据集要求效率高的话,就可以使用默认的。而且这两种持久化方式可以同时使用。  

做过redis的集群吗?你们做集群的时候搭建了几台,都是怎么搭建的?

Redis的数据是存放在内存中的,不适合存储大数据,大数据存储一般公司常用hadoop中的Hbase或者MogoDB。redis主要用来处理高并发的,用我们的项目来说,电商项目如果并发大的话,一台单独的redis是不能足够支持我们的并发,这就需要我们扩展多台设备协同合作,即用到集群。

Redis搭建集群的方式有多种,例如:客户端分片、Twemproxy、Codis等,但是redis3.0之后就支持redis-cluster集群,这种方式采用的是无中心结构,每个节点保存数据和整个集群的状态,每个节点都和其他所有节点连接。如果使用的话就用redis-cluster集群。集群这块是公司运维搭建的,具体怎么搭建不是太了解。

我们项目中redis集群主要搭建了6台,3主(为了保证redis的投票机制)3从(高可用),每个主服务器都有一个从服务器,作为备份机。所有的节点都通过PING-PONG机制彼此互相连接;客户端与redis集群连接,只需要连接集群中的任何一个节点即可;Redis-cluster中内置了16384个哈希槽,Redis-cluster把所有的物理节点映射到【0-16383】slot上,负责维护。

redis有事务吗?

Redis是有事务的,redis中的事务是一组命令的集合,这组命令要么都执行,要不都不执行,保证一个事务中的命令依次执行而不被其他命令插入。redis的事务是不支持回滚操作的。redis事务的实现,需要用到MULTI(事务的开始)和EXEC(事务的结束)命令 ;

缓存穿透

缓存查询一般都是通过key去查找value,如果不存在对应的value,就要去数据库中查找。如果这个key对应的value在数据库中也不存在,并且对该key并发请求很大,就会对数据库产生很大的压力,这就叫缓存穿透

解决方案:

1.对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃。

2.将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zgdspf.html