上图中,对于目前的训练数据,绿色和黑色的直线(二维特征空间,分离超平面就是直线啦)都可以很可以很好的进行分类。但是,通过已知数据建立分离超平面的目的,是为了对于未知数据进行分类的。在下图中,蓝色的星星图案就是新加入的真实数据。
这时候我们就可以看出不同的分离超平面的选择对于分类效果的影响了。有的绿线会将三个点都划归蓝色圆圈,有的绿线会将三个点都划归红色正方形。
那么绿线和黑线留下谁?我们认为,已有的训练数据中,每个元素距离分离超平面都有一个距离。在添加超平面的时候,尽可能的使最靠近分离超平面的那个元素与超平面的距离变大。这样,加入新的数据的时候,分的准的概率会最大化。感知器模型和逻辑回归都不能很好的完成这个工作,该我们的支持向量机(support vector machine,SVM)出场了。
首先,SVM将函数间隔(\left| W^{T}X+b \right| ,将特征值代入分离超平面的方程中,得到的绝对值)归一化,归一化的目的是除掉取值尺度的影响;其次,对所有元素求到超平面的距离,(这个距离是\frac{\left| W^{T}X+b \right| }{\left| W \right| } ,也就是几何间隔)。给定一个超平面P,所有样本距离超平面P的距离可以记为d_{ij}=\frac{\left| W^{T}X+b \right| }{\left| W \right| } ,这其中最小的距离记为D_{P},SVM的作用就是找到D_{P}最大的超平面。
可以看出,大部分数据对于分离超平面都没有作用,能决定分离超平面的,只是已知的训练数据中很小的一部分。这与逻辑回归有非常大的区别。上图中,决定黑色的这条最优分离超平面的数据只有下方的两个红色的数据点和上方的一个蓝色的数据点。这些对于分离超平面有着非常强大影响的数据点也被称为支持向量(看没看到,这就是传说中的支持向量啦,原来如此)。
引入黑科技-核函数
上面说的都是在原始特征的维度上,能直接找到一条分离超平面将数据完美的分成两类的情况。但如果找不到呢?
比如,原始的输入向量是一维的,0< x <1的类别是1,其他情况记做-1。这样的情况是不可能在1维空间中找到分离超平面的(一维空间中的分离超平面是一个点,aX+b=0)。你用一个点切一下试试?
这就要说到SVM的黑科技—核函数技巧。核函数可以将原始特征映射到另一个高维特征空间中,解决原始空间的线性不可分问题。
继续刚才那个数轴。
如果我们将原始的一维特征空间映射到二维特征空间X^{2}和x,那么就可以找到分离超平面X^{2}-X=0。当X^{2}-X<0的时候,就可以判别为类别1,当X^{2}-X>0 的时候,就可以判别为类别0。如下图:
再将X^2-X=0映射回原始的特征空间,就可以知道在0和1之间的实例类别是1,剩下空间上(小于0和大于1)的实例类别都是0啦。
利用特征映射,就可以将低维空间中的线性不可分问题解决了。是不是很神奇,这就是特征映射的牛逼之处了。核函数除了能够完成特征映射,而且还能把特征映射之后的内积结果直接返回,大幅度降低了简化了工作,这就是为啥采用核函数的原因。
SVM有三种模型,由简至繁为
当训练数据训练可分时,通过硬间隔最大化,可学习到硬间隔支持向量机,又叫线性可分支持向量机
当训练数据训练近似可分时,通过软间隔最大化,可学习到软间隔支持向量机,又叫线性支持向量机
当训练数据训练不可分时,通过软间隔最大化及核技巧(kernel trick),可学习到非线性支持向量机