操作系统管理内存的机制——为什么要设置虚拟内存?

在进入正题前先来谈谈操作系统内存管理机制的发展历程,了解这些有利于我们更好的理解目前操作系统的内存管理机制。

一 早期的内存分配机制

在早期的计算机中,要运行一个程序,会把这些程序全都装入内存,程序都是直接运行在内存上的,也就是说程序中访问的内存地址都是实际的物理内存地址。当计算机同时运行多个程序时,必须保证这些程序用到的内存总量要小于计算机实际物理内存的大小。那当程序同时运行多个程序时,操作系统是如何为这些程序分配内存的呢?下面通过实例来说明当时的内存分配方法:

某台计算机总的内存大小是128M,现在同时运行两个程序A和B,A需占用内存10M,B需占用内存110。计算机在给程序分配内存时会采取这样的方法:先将内存中的前10M分配给程序A,接着再从内存中剩余的118M中划分出110M分配给程序B。这种分配方法可以保证程序A和程序B都能运行,但是这种简单的内存分配策略问题很多。

操作系统管理内存的机制——为什么要设置虚拟内存?

图一 早期的内存分配方法

  问题1:进程地址空间不隔离。由于程序都是直接访问物理内存,所以恶意程序可以随意修改别的进程的内存数据,以达到破坏的目的。有些非恶意的,但是有bug的程序也可能不小心修改了其它程序的内存数据,就会导致其它程序的运行出现异常。这种情况对用户来说是无法容忍的,因为用户希望使用计算机的时候,其中一个任务失败了,至少不能影响其它的任务。

  问题2:内存使用效率低。在A和B都运行的情况下,如果用户又运行了程序C,而程序C需要20M大小的内存才能运行,而此时系统只剩下8M的空间可供使用,所以此时系统必须在已运行的程序中选择一个将该程序的数据暂时拷贝到硬盘上,释放出部分空间来供程序C使用,然后再将程序C的数据全部装入内存中运行。可以想象得到,在这个过程中,有大量的数据在装入装出,导致效率十分低下。

  问题3:程序运行的地址不确定。当内存中的剩余空间可以满足程序C的要求后,操作系统会在剩余空间中随机分配一段连续的20M大小的空间给程序C使用,因为是随机分配的,所以程序运行的地址是不确定的。

二 分段

  为了解决上述问题,人们想到了一种变通的方法,就是增加一个中间层,利用一种间接的地址访问方法访问物理内存。按照这种方法,程序中访问的内存地址不再是实际的物理内存地址,而是一个虚拟地址,然后由操作系统将这个虚拟地址映射到适当的物理内存地址上。这样,只要操作系统处理好虚拟地址到物理内存地址的映射,就可以保证不同的程序最终访问的内存地址位于不同的区域,彼此没有重叠,就可以达到内存地址空间隔离的效果。

当创建一个进程时,操作系统会为该进程分配一个4GB大小的虚拟进程地址空间。之所以是4GB,是因为在32位的操作系统中,一个指针长度是4字节,而4字节指针的寻址能力是从0x00000000~0xFFFFFFFF,最大值0xFFFFFFFF表示的即为4GB大小的容量。与虚拟地址空间相对的,还有一个物理地址空间,这个地址空间对应的是真实的物理内存。如果你的计算机上安装了512M大小的内存,那么这个物理地址空间表示的范围是0x00000000~0x1FFFFFFF。当操作系统做虚拟地址到物理地址映射时,只能映射到这一范围,操作系统也只会映射到这一范围。当进程创建时,每个进程都会有一个自己的4GB虚拟地址空间。要注意的是这个4GB的地址空间是“虚拟”的,并不是真实存在的,而且每个进程只能访问自己虚拟地址空间中的数据,无法访问别的进程中的数据,通过这种方法实现了进程间的地址隔离。那是不是这4GB的虚拟地址空间应用程序可以随意使用呢?很遗憾,在Windows系统下,这个虚拟地址空间被分成了4部分:NULL指针区、用户区、64KB禁入区、内核区。应用程序能使用的只是用户区而已,大约2GB左右(最大可以调整到3GB)。内核区为2GB,内核区保存的是系统线程调度、内存管理、设备驱动等数据,这部分数据供所有的进程共享,但应用程序是不能直接访问的。

人们之所以要创建一个虚拟地址空间,目的是为了解决进程地址空间隔离的问题。但程序要想执行,必须运行在真实的内存上,所以,必须在虚拟地址与物理地址间建立一种映射关系。这样,通过映射机制,当程序访问虚拟地址空间上的某个地址值时,就相当于访问了物理地址空间中的另一个值。人们想到了一种分段(Sagmentation)的方法,它的思想是在虚拟地址空间和物理地址空间之间做一一映射。比如说虚拟地址空间中某个10M大小的空间映射到物理地址空间中某个10M大小的空间。这种思想理解起来并不难,操作系统保证不同进程的地址空间被映射到物理地址空间中不同的区域上,这样每个进程最终访问到的

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zgzdpj.html