face recognition[翻译][深度学习理解人脸] (8)

为了利用多个数据集上所有的信息,如人脸框,人脸关键点,姿态,性别,年龄,笑容,和ID信息,多个子网络可以关于任务相关的数据集进行训练,然后将参数进行共享,因为没有一个单一的数据集包含所有人脸分析任务所需的标注信息。通过这种方法,我们可以用参数共享的方式来自适应整个领域,而不是去拟合具体任务领域。在测试的时候,这些子网络融合到一个单一的all in one face中。表5列出了基于不同数据集下训练all in one face。

face recognition[翻译][深度学习理解人脸]


具体的loss函数用来端到端的训练该网络。all in one face网络输出结果在图9。

face recognition[翻译][深度学习理解人脸]


基于MTL的DCNN同样可以用来决定多个人脸属性。Depghan提出深度年龄,性别和表情识别(deep age, gender, and emotion recognition,dager)[111],基于DCNN网络去识别年龄,性别,表情。类似all in one face[2],它基于不同的任务采用不同的数据集去训练该DCNN。He[112]通过训练一个网络去联合的做人脸检测和人脸属性分析。不同于其他MTL方法,他们使用整个图片作为网络的输入,而不只是人脸本身的区域。一个基于faster rcnn的方法可以用来一起检测人脸,表6总结了一些近期基于MTL方法的人脸分析任务

face recognition[翻译][深度学习理解人脸]

7.开放问题

我们简短的讨论了对于一个自动人脸验证和失败系统的每个组件上的设计思路。包括:

人脸检测:相对通用目标检测,人脸检测是一个更具有挑战的任务,因为涉及到人脸的多种变化,这些变化包含光照的,人脸表情的,人脸角度的,遮挡等等。其他因素如模糊和低分辨率一样增大了该任务的难度;

关键点检测:大多数数据集包含几千张图片,一个很大的标注和无约束数据集会使得人脸对齐系统具有更强的鲁棒性来应对其中的挑战,如极端的姿态,低光照和小的,模糊的人脸图像。研究者们假设更深的CNN能够抓取更鲁棒的信息;然而目前为止,仍然未研究出哪些层能够准确的提取局部特征来做人脸关键点检测。

人脸验证/识别:对于人脸识别和验证而言,性能可以通过学习一个判别性距离度量来提升。由于受显卡的内存限制,如何选择信息对或三元组并使用大规模数据集上的在线方法(例如,随机梯度下降)端到端地训练网络仍然是一个悬而未决的问题。要解决的另一个具有挑战性的问题是在深度网络中加入全动态视频处理,以实现基于视频的人脸分析。

8.总结

可以参考文献[12]

参考文献:

R. Ranjan, S. Sankaranarayanan, A. Bansal, N. Bodla, J. C. Chen, V. M. Patel, C. D. Castillo, and R. Chellappa. Deep learning for understanding faces: Machines may be just as good, or better, than humans [J]. IEEE Signal Processing Magazine, 35(1):66–83, 2018

Yiming Lin, Jie Shen, Shiyang Cheng, Maja Pantic. Mobile Face Tracking: A Survey and Benchmark[J] arXiv Preprint, arXiv:1805.09749, 2018.

Yuqian Zhou, Ding Liu, Thomas Huang. Survey of Face Detection on Low-quality Images[J] arXiv Preprint, arXiv:1804.07362, 2018.

Xin Jin, Xiaoyang Tan Face Alignment In-the-Wild: A Survey[J] arXiv Preprint, arXiv:1608.04188, 2018.

[1] W. Y. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recognition: aliterature survey,” ACM Comput. Surveys, vol. 35, no. 4, pp. 399–458, 2003.
[2] R. Ranjan, S. Sankaranarayanan, C. D. Castillo, and R. Chellappa, “An all-inone convolutional neural network for face analysis,” in Proc. IEEE Int. Conf.Automatic Face Gesture Recognition, 2017, pp. 17–24.
[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Proc. Advances Neural Information Processing Systems Conf., 2012, pp. 1097–1105.
[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” arXiv Preprint, arXiv:1409.4842, 2014.
[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2016, pp. 770–778.
[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2014, pp. 580–587.
[7] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” in Proc. Advances Neural Information Processing Systems Conf., 2015, pp. 91–99.
[8] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “SSD: Single shot multibox detector,” in Proc. European Conf. Computer Vision, 2016, pp. 21–37.
[9] R. Ranjan, V. M. Patel, and R. Chellappa, “A deep pyramid deformable part model for face detection,” in Proc. IEEE 7th Int. Conf. Biometrics Theory, Applications and Systems, 2015, pp. 1–8.
[10] R. Ranjan, V. Patel, and R. Chellappa, “Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition,” arXiv Preprint, arXiv:1603.01249, 2016.
[11] A. Kumar, R. Ranjan, V. Patel, and R. Chellappa, “Face alignment by local deep descriptor regression,” arXiv Preprint, arXiv:1601.07950, 2016.
[12] J. Chen, R. Ranjan, S. Sankaranarayanan, A. Kumar, C. Chen, V. M. Patel, C. D. Castillo, and R. Chellappa, “Unconstrained still/video-based face verification with deep convolutional neural networks,” Int. J. Comput. Vis., pp. 1–20. 2017.
[13] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from scratch,” arXiv Preprint, arXiv:1411.7923, 2014.
[14] I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and E. Brossard, “The megaface benchmark: 1 million faces for recognition at scale,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2016, pp. 4873–4882.
[15] A. Nech and I. Kemelmacher-Shlizerman, “Level playing field for million scale face recognition,” in Proc. IEEE Int. Conf. Computer Vision Pattern Recognition, 2017, pp. 873–4882.
[16] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “Ms-celeb-1m: A data set and benchmark for large-scale face recognition,” in Proc. European Conf. Computer Vision, 2016, pp. 87–102.
[17] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in Proc. British Machine Vision Conf., vol. 1, no. 3, 2015, p. 6.
[18] S. Yang, P. Luo, C.-C. Loy, and X. Tang, “Wider face: A face detection benchmark,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2016, pp. 5525–5533.
[19] H. Jiang and E. Learned-Miller, “Face detection with the faster R-CNN,” arXiv Preprint, arXiv:1606.03473, 2016.
[20] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders, “Selective search for object recognition,” Int. J. Comput. Vis., vol. 104, no. 2, pp. 154–171, 2013.
[21] Y. Li, B. Sun, T. Wu, and Y. Wang, “Face detection with end-to-end integration of a convnet and a 3D model,” in Proc. European Conf. Computer Vision, 2016, pp. 420–436.
[22] D. Chen, G. Hua, F. Wen, and J. Sun, “Supervised transformer network for efficient face detection,” in Proc. European Conf. Computer Vision, 2016, pp. 122–138.
[23] M. Najibi, P. Samangouei, R. Chellappa, and L. Davis, “SSH: Single stage headless face detector,” arXiv Preprint, arXiv:1708.03979, 2017.
[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for largescale image recognition,” arXiv Preprint, arXiv:1409.1556, 2014.
[25] S. S. Farfade, M. J. Saberian, and L.-J. Li, “Multi-view face detection using deep convolutional neural networks,” in Proc. ACM Int. Conf. Multimedia Retrievals, 2015, pp. 643–650.
[26] S. Yang, P. Luo, C.-C. Loy, and X. Tang, “From facial parts responses to face detection: A deep learning approach,” in Proc. IEEE Int. Conf. Computer Vision, 2015, pp. 3676–3684.
[27] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, “A convolutional neural network cascade for face detection,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2015, pp. 5325–5334.
[28] S. Yang, Y. Xiong, C. C. Loy, and X. Tang, “Face detection through scalefriendly deep convolutional networks,” arXiv Preprint, arXiv:1706.02863,2017.
[29] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li, “S3 FD: Single shot scale-invariant face detector,” arXiv Preprint, arXiv:1708.05237, 2017.
[30] V. Jain and E. Learned-Miller, “FDDB: A benchmark for face detection in unconstrained settings,” Tech. Rep. vol. 88, Univ. Massachusetts, Amherst, UM-CS-2010-009, 2010.
[31] B. Yang, J. Yan, Z. Lei, and, S. Z. Li, “Fine-grained evaluation on face detection in the wild,” in, Proc. 11th IEEE Int. Conf. WorkshopsAutomatic Face and Gesture Recognition, vol. 1, 2015, pp. 1–7.
[32] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using multitask cascaded convolutional networks,” IEEE Signal Processing Lett.,vol. 23, no. 10, pp. 1499–1503, 2016.
[33] P. Hu and D. Ramanan, “Finding tiny faces,” arXiv Prepr int, arXiv:1612.04402, 2016.
[34] S. Zafeiriou, C. Zhang, and Z. Zhang, “A survey on face detection in the wild:Past, present and future,” Comput. Vis. Image Understand., vol. 138, pp. 1–24,Sept. 2015.
[35] A. Bansal, C. D. Castillo, R. Ranjan, and R. Chellappa, “The do’s and don’ts for CNN-based face verification,” arXiv Preprint, arXiv:1705.07426, 2017.
[36] N. Wang, X. Gao, D. Tao, H. Yang, and X. Li, “Facial feature point detection: A comprehensive survey,” Neurocomputing, June 2017.
[37] G. G. Chrysos, E. Antonakos, P. Snape, A. Asthana, and S. Zafeiriou, “A comprehensive performance evaluation of deformable face tracking in-the-wild,” Int. J. Comput. Vis., pp. 1–35, 2016.
[38] S. Zhu, C. Li, C.-C. Loy, and X. Tang, “Unconstrained face alignment via cascaded compositional learning,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2016, pp. 3409–3417.
[39] S. Ren, X. Cao, Y. Wei, and J. Sun, “Face alignment at 3000 fps via regressing local binary features,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, June 2014, pp. 1685–1692.
[40] X. Xiong and F. D. la Torre, “Supervised descent method and its applications to face alignment,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2013,pp. 532–539.
[41] V. Kazemi and J. Sullivan, “One millisecond face alignment with an ensemble of regression trees,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2014, pp. 1867–1874.
[42] X. Burgos-Artizzu, P. Perona, and P. Dollár, “Robust face landmark estimation under occlusion,” in Proc. IEEE Int. Conf. Computer Vision, 2013, pp. 1513–1520.
[43] E. Antonakos, J. Alabort-i Medina, and S. Zafeiriou, “Active pictorial structures,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2015, pp. 5435–5444.
[44] A. Jourabloo and X. Liu, “Pose-invariant 3D face alignment,” in Proc. IEEE Int. Conf. Computer Vision, 2015, pp. 3694–3702.
[45] A.Jourabloo and X. Liu, “Large-pose face alignment via CNN-based dense 3D model fitting,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2016,pp. 4188–4196.
[46] X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li, “Face alignment across large poses: A 3D solution,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2016, pp. 146–155.
[47] Y. Sun, X. Wang, and X. Tang, “Deep convolutional network cascade for facial point detection,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2013, pp. 3476–3483.
[48] J. Zhang, S. Shan, M. Kan, and X. Chen, “Coarse-to-fine auto-encoder networks for real-time face alignment,” in Proc. European Conf. Computer Vision, 2014, pp. 1–16.
[49] X. Xiong and F. D. la Torre, “Global supervised descent method,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2015, pp. 2664–2673.
[50] G. Trigeorgis, P. Snape, M. A. Nicolaou, E. Antonakos, and S. Zafeiriou, “Mnemonic descent method: A recurrent process applied for end-to-end face alignment,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2016, pp. 4177–4187.
[51] A. Bulat and G. Tzimiropoulos, “Convolutional aggregation of local evidence for large pose face alignment,” in Proc. British Machine Vision Conference (BMVC), Sept. 2016, pp. 86.1–86.12.
[52] A. Kumar, A. Alavi, and R. Chellappa, “Kepler: Keypoint and pose estimation of unconstrained faces by learning efficient H-CNN regressors,” in Proc. IEEE Int. Conf. Automatic Face Gesture Recognition, 2017. doi: 10.1109/FG.2017.149
[53] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic, “300 Faces in-the-wild challenge: database and results,” Image Vis. Comput., vol.47, pp. 3–18, Mar. 2016.
[54] T. Hassner, S. Harel, E. Paz, and R. Enbar, “Effective face frontalization in unconstrained images,” in Proc. IEEE Int. Conf. Computer Vision Pattern Recognition, 2015, pp. 4295–4304.
[55] X. Zhu and D. Ramanan, “Face detection, pose estimation, and landmark localization in the wild,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, June 2012, pp. 2879–2886.
[56] E. Learned-Miller, G. B. Huang, A. RoyChowdhury, H. Li, and G. Hua, “Labeled faces in the wild: A survey,” in Proc. Advances Face Detection Facial Image Analysis Conf., 2016, pp. 189–248.
[57] G. B. Huang, H. Lee, and E. Learned-Miller, “Learning hierarchical representations for face verification with convolutional deep belief networks,” in Proc. IEEE Int. Conf. Computer Vision Pattern Recognition, 2012, pp. 2518–2525.
[58] Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf, “Deepface: Closing the gap to human-level performance in face verification,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2014, pp. 1701–1708.
[59] Y. Sun, X. Wang, and X. Tang, “Deep learning face representation from predicting 10000 classes,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2014, pp. 1891–1898.
[60] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face representation by joint identification-verification,” in Proc. Advances Neural Information Processing Systems Conf., 2014, pp. 1988–1996.
[61] Y. Sun, X. Wang, and X. Tang, “Deeply learned face representations are sparse, selective, and robust,” arXiv Preprint, arXiv:1412.1265, 2014.
[62] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recognition and clustering,” arXiv Preprint, arXiv:1503.03832, 2015.
[63] W. AbdAlmageed, Y. Wu, S. Rawls, S. Harel, T. Hassne, I. Masi, J. Choi, J. Lekust, J. Kim, P. Natarajana, R. Nevatia, and G. Medioni, “Face recognition using deep multi-pose representations,” in Proc. IEEE Winter Conf. Applications Computer Vision, 2016, pp. 1–9.
[64] I. Masi, A. T. Tran, J. T. Leksut, T. Hassner, and G. Medioni, “Do we really need to collect millions of faces for effective face recognition?” arXiv Preprint, arXiv:1603.07057, 2016.
[65] C. Ding and D. Tao, “Trunk-branch ensemble convolutional neural networks for video-based face recognition,” arXiv Preprint, arXiv:1607.05427, 2016.
[66] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning approach for deep face recognition,” in Proc. European Conf. Computer Vision, 2016, pp. 499–515.
[67] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep hypersphere embedding for face recognition,” in Proc. IEEE Int. Conf. Computer Vision Pattern Recognition, 2017, pp. 212–220.
[68] R. Ranjan, C. D. Castillo, and R. Chellappa, “L2-constrained softmax loss for discriminative face verification,” arXiv Preprint, arXiv:1703.09507, 2017.
[69] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen, P. Grother, A. Mah, M. Burge, and A. K. Jain, “Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2015, pp. 1931–1939.
[70] J. Yang, P. Ren, D. Chen, F. Wen, H. Li, and G. Hua, “Neural aggregation network for video face recognition,” arXiv Preprint, arXiv:1603.05474, 2016.
[71] N. Bodla, J. Zheng, H. Xu, J.-C. Chen, C. Castillo, and R. Chellappa, “Deep heterogeneous feature fusion for template-based face recognition,” in Proc. IEEE Winter Conf. Applications Computer Vision, 2017, pp. 586–595.
[72] J. Hu, J. Lu, and Y.-P. Tan, “Discriminative deep metric learning for face verification in the wild,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2014, pp. 1875–1882.
[73] S. Sankaranarayanan, A. Alavi, C. Castillo, and R. Chellappa, “Triplet probabilistic embedding for face verification and clustering,” arXiv Preprint, arXiv:1604.05417, 2016.
[74] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric learning via lifted structured feature embedding,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2016, pp. 4004–4012.
[75] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of deep representations and image clusters,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2016, pp. 5147–5156.
[76] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Joint face representation adaptation and clustering in videos,” in Proc. European Conf. Computer Vision, 2016, pp. 236–251.
[77] G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. W. Schuller, “A deep matrix factorization method for learning attribute representations,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 3, pp. 417–429, 2017.
[78] W.-A. Lin, J.-C. Chen, and R. Chellappa, “A proximity-aware hierarchical clustering of faces,” in Proc. IEEE Conf. Automatic Face Gesture Recognition, 2017. doi: 10.1109/FG.2017.134
[79] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “MS-celeb-1m: A data set and benchmark for large scale face recognition,” in Proc. European Conf. Computer Vision, 2016, pp. 87–102.
[80] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proc. IEEE Int. Conf. Computer Vision, 2015, pp. 3730–3738.
[81] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: A database for studying face recognition in unconstrained environments,” vol.1, no. 2, p. 3, Tech. Rep. 07-49, Univ. Massachusetts, Amherst, 2007.
[82] L. Wolf, T. Hassner, and, I. Maoz, “Face recognition in unconstrained videos with matched background similarity,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2011, pp. 529–534.
[83] J. R. Beveridge, P. J. Phillips, D. S. Bolme, B. A. Draper, G. H. Givens, Y. M. Lui, M. N. Teli, H. Zhang, W. T. Scruggs, K. W. Bowyer, and P. J. Flynn, “The challenge of face recognition from digital point-and-shoot cameras,” in Proc. IEEE
Int. Conf. Biometrics: Theory, Applications and Systems, 2013, pp. 1–8. [84] S. Sengupta, J.-C. Chen, C. Castillo, V. M. Patel, R. Chellappa, and D. W. Jacobs, “Frontal to profile face verification in the wild,” in Proc. IEEE Winter Conf. Applications of Computer Vision, 2016, pp. 1–9.
[85] A. Bansal, A. Nanduri, C. Castillo, R. Ranjan, and R. Chellappa, “Umdfaces: An annotated face data set for training deep networks,” arXiv Preprint, arXiv:1611.01484, 2016.
[86] Y. Sun, D. Liang, X. Wang, and X. Tang, “Deepid3: Face recognition with very deep neural networks,” arXiv Preprint, arXiv:1502.00873, 2015.
[87] D. Wang, C. Otto, and A. K. Jain, “Face search at scale: 80 million gallery,” arXiv Preprint, arXiv:1507.07242, 2015.
[88] C. Ding and D. Tao, “Robust face recognition via multimodal deep face representation,” arXiv Preprint, arXiv:1509.00244, 2015.
[89] L. Wolf, T. Hassner, and I. Maoz, “Face recognition in unconstrained videos with matched background similarity,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2011, pp. 529–534.
[90] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput. Vis., vol. 57, no. 2, pp. 137–154, 2004.
[91] “IARPA Janus benchmark: A performance report,” National Institute of Standards and Technology (NIST), 2016.
[92] A. RoyChowdhury, T.-Y. Lin, S. Maji, and E. Learned-Miller, “One-to-many face recognition with bilinear CNNs,” in Proc. IEEE Winter Conf. Applications of Computer Vision, 2016, pp. 1–9.
[93] N. Crosswhite, J. Byrne, O. M. Parkhi, C. Stauffer, Q. Cao, and A. Zisserman, “Template adaptation for face verification and identification,” Proc. IEEE Int. Conf. Automatic Face Gesture Recognition, 2017, pp. 1–8.
[94] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” arXiv Preprint, arXiv:1611.05431, 2016.
[95] A. K. Jain, S. C. Dass, and K. Nandakumar, “Can soft biometric traits assist user recognition?” in Defense and Security. Orlando, FL: Int. Society Optics and Photonics, 2004, pp. 561–572.
[96] N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev, “Panda: Pose aligned networks for deep attribute modeling,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2014, pp. 1637–1644.
[97] G. Levi and T. Hassner, “Age and gender classification using convolutional neural networks,” in Proc. IEEE Conf. Computer Vision Pattern Recognition Workshops, 2015, pp. 34–42.
[98] P. Samangouei and R. Chellappa, “Convolutional neural networks for attributebased active authentication on mobile devices,” in Proc. IEEE Int. Conf. Biometrics Theory Applications Systems, 2016, pp. 1–8.
[99] B. Siddiquie, R. S. Feris, and L. S. Davis, “Image ranking and retrieval based on multi-attribute queries,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2011, pp. 801–808.
[100] E. M. Hand and R. Chellappa, “Attributes for improved attributes: A multitask network utilizing implicit and explicit relationships for facial attribute classification,” in Proc. AAAI Conf. Artificial Intelligence, 2017, pp. 4068–4074.
[101] M. Günther, A. Rozsa, and T. E. Boult, “Affact-alignment free facial attribute classification technique,” arXiv Preprint, arXiv:1611.06158, 2016.
[102] P. Samangouei, V. M. Patel, and R. Chellappa, “Attribute-based continuous user authentication on mobile devices,” in Proc. IEEE Int. Conf. Biometrics Theory Applications Systems, 2015, pp. 1–8.
[103] P. Samangouei, V. Patel, and R. Chellappa, “Facial attributes for active authentication on mobile devices,” Image Vis. Computing, vol. 58, pp. 181–192, Feb. 2017.
[104] R. Caruana, “Multitask learning,” in Learning to Learn. New York: Springer, 1998, pp. 95–133.
[105] Y. W. X. C. D. Chen, S. Ren, and J. Sun, “Joint cascade face detection and alignment,” in Proc. European Conf. Computer Vision, 2014, vol. 8694, pp. 109–122.
[106] I. Goodfellow, Y. Bengio, and A. Courville. (2016). Deep Learning. Cambridge, MA: MIT Press. [Online]. Available: .org
[107] Z. Zhang, P. Luo, C. Loy, and X. Tang, “Facial landmark detection by deep multi-task learning,” in Proc. European Conf. Computer Vision, 2014, pp. 94–108.
[108] K. Ricanek and T. Tesafaye, “Morph: A longitudinal image database of normal adult age-progression,” in Proc. Int. Conf. Automatic Face Gesture Recognition, Apr. 2006, pp. 341–345.
[109] R. Rothe, R. Timofte, and L. V. Gool, “DEX: Deep expectation of apparent age from a single image,” in Proc. IEEE Int. Conf. Computer Vision Workshop ChaLearn Looking at People, 2015, pp. 10–15.
[110] M. Koestinger, P. Wohlhart, P. M. Roth, and H. Bischof, “Annotated facial landmarks in the wild: A large-scale, real-world database for facial landmark localization,”
in Proc. IEEE 1st Int. Workshop Benchmarking Facial Image Analysis Technologies, 2011, pp. 2144–2151.
[111] A. Dehghan, E. G. Ortiz, G. Shu, and S. Z. Masood, “DAGER: Deep age, gender and emotion recognition using convolutional neural network,” arXiv Preprint, arXiv:1702.04280, 2017.
[112] K. He, Y. Fu, and X. Xue, “A jointly learned deep architecture for facial attribute analysis and face detection in the wild,” arXiv Preprint, arXiv:1707.08705, 2017.

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zwgyjf.html