重磅!YOLOv4阅读笔记(附思维导图和论文译文)! (3)

对于那些仅增加少量推理成本但可以显着提高对象检测准确性的插件模块和后处理方法,我们将其称为“特价商品”。一般而言,这些插件模块用于增强模型中的某些属性,例如扩大接受域,引入注意力机制或增强特征集成能力等,而后处理是用于筛选模型预测结果的方法。

可以用来增强接收域的通用模块是SPP [25],ASPP [5]和RFB [47]。 SPP模块起源于空间金字塔匹配(SPM)[39],SPM的原始方法是将功能图分割成若干x不等的块,其中{1,2,3,...}可以是空间金字塔,然后提取词袋特征。 SPP将SPM集成到CNN中,并使用最大池操作而不是词袋运算。由于Heet等人提出了SPP模块。 [25]将输出一维特征向量,在全卷积网络(FCN)中应用是不可行的。因此,在YOLOv3的设计中[63],Redmon和Farhadi将SPP模块改进为内核大小为k×k的最大池输出的串联,其中k = {1,5,9,13},步长等于1。在这种设计下,相对大k×kmax池有效地增加了骨干特征的接受范围。在添加了改进版本的SPP模块之后,YOLOv3-608在MS COCOobject检测任务上将AP50升级了2.7%,而额外的计算费用为0.5%。ASPP[5]模块和改进的SPP模块之间的操作差异主要来自于原始k× kkernel大小,最大卷积步长等于1到3×3内核大小,膨胀比等于tok,步长等于1。 RFB模块将使用k×kkernel的几个扩张卷积,扩张比率equalstok和步幅等于1来获得比ASPP更全面的空间覆盖范围。 RFB [47]仅花费7%的额外推断时间即可将MS COCO上SSD的AP50提高5.7%。

物体检测中常用的注意模块主要分为通道式注意和点式注意,这两种注意模型的代表分别是挤压激发(SE)[29]和空间注意模块(SAM)[85]。虽然SE模块在Im-ageNet图像分类任务中可以提高1%的TOP-1准确率,但是在GPU上通常会增加10%左右的推理时间,因此更适合在移动设备上使用,虽然SE模块在Im-ageNet图像分类任务中可以提高1%的TOP-1准确率,但是在GPU上通常会增加10%左右的推理时间。而对于SAM,它只需要额外支付0.1%的计算量,在ImageNet图像分类任务上可以提高ResNet50-SE 0.5%的TOP-1准确率。最棒的是,它完全不影响GPU上的推理速度。

在特征集成方面,早期的实践是使用KIP连接[51]或超列[22]将低级物理特征集成到高级语义特征。随着模糊神经网络等多尺度预测方法的普及,人们提出了许多集成不同特征金字塔的轻量级模块。这种类型的模块包括SfAM[98]、ASFF[48]和BiFPN[77]。SfAM的主要思想是使用SE模块对多比例尺拼接的特征地图进行通道级的加权。ASFF采用Softmax作为逐点层次加权,然后添加不同尺度的特征地图;BiFPN采用多输入加权残差连接进行尺度层次重新加权,再添加不同尺度的特征地图。

在深度学习的研究中,有些人专注于寻找良好的激活功能。良好的激活函数可以使梯度更有效地传播,同时不会引起过多的计算成本。在2010年,Nair和Hin-ton [56]提出了ReLU,以基本上解决传统tanh和sigmoid激活函数中经常遇到的梯度消失问题。随后,LReLU [54],PReLU [24],ReLU6 [28],比例指数线性单位(SELU)[35],Swish [59],hard-Swish [27]和Mish [55]等,它们也是已经提出了用于解决梯度消失问题的方法。 LReLU和PReLU的主要目的是解决当输出小于零时ReLU的梯度为零的问题。至于ReLU6和hard-Swish,它们是专门为量化网络设计的。为了对神经网络进行自归一化,提出了SELU激活函数来满足这一目标。要注意的一件事是,Swish和Mishare都具有连续可区分的激活功能。

在基于深度学习的对象检测中通常使用的后处理方法是NMS,它可以用于过滤那些无法预测相同对象的BBox,并仅保留具有较高响应速度的候选BBox。 NMS尝试改进的方法与优化目标函数的方法一致。 NMS提出的原始方法没有考虑上下文信息,因此Girshicket等人。 [19]在R-CNN中添加了分类置信度得分作为参考,并且根据置信度得分的顺序,从高分到低分的顺序执行贪婪的NMS。对于软网络管理系统[1],考虑了一个问题,即物体的遮挡可能会导致带有IoU评分的贪婪的网络管理系统的置信度得分下降。 DIoU NMS [99]开发人员的思维方式是在softNMS的基础上将中心距离的信息添加到BBox筛选过程中。值得一提的是,由于上述后处理方法均未直接涉及捕获的图像功能,因此在随后的无锚方法开发中不再需要后处理。

3、方法(Methodology)

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zwjjyw.html