java高并发系列 - 第32天:高并发中计数器的实现方式有哪些?

4种方式实现计数器功能,对比其性能

介绍LongAdder

介绍LongAccumulator

需求:一个jvm中实现一个计数器功能,需保证多线程情况下数据正确性。

我们来模拟50个线程,每个线程对计数器递增100万次,最终结果应该是5000万。

我们使用4种方式实现,看一下其性能,然后引出为什么需要使用LongAdder、LongAccumulator。

方式一:synchronized方式实现 package com.itsoku.chat32; import java.util.ArrayList; import java.util.List; import java.util.concurrent.CompletableFuture; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutionException; import java.util.concurrent.atomic.LongAccumulator; /** * 跟着阿里p7学并发,微信公众号:javacode2018 */ public class Demo1 { static int count = 0; public static synchronized void incr() { count++; } public static void main(String[] args) throws ExecutionException, InterruptedException { for (int i = 0; i < 10; i++) { count = 0; m1(); } } private static void m1() throws InterruptedException { long t1 = System.currentTimeMillis(); int threadCount = 50; CountDownLatch countDownLatch = new CountDownLatch(threadCount); for (int i = 0; i < threadCount; i++) { new Thread(() -> { try { for (int j = 0; j < 1000000; j++) { incr(); } } finally { countDownLatch.countDown(); } }).start(); } countDownLatch.await(); long t2 = System.currentTimeMillis(); System.out.println(String.format("结果:%s,耗时(ms):%s", count, (t2 - t1))); } }

输出:

结果:50000000,耗时(ms):1437 结果:50000000,耗时(ms):1913 结果:50000000,耗时(ms):386 结果:50000000,耗时(ms):383 结果:50000000,耗时(ms):381 结果:50000000,耗时(ms):382 结果:50000000,耗时(ms):379 结果:50000000,耗时(ms):379 结果:50000000,耗时(ms):392 结果:50000000,耗时(ms):384

平均耗时:390毫秒

方式2:AtomicLong实现 package com.itsoku.chat32; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutionException; import java.util.concurrent.atomic.AtomicLong; /** * 跟着阿里p7学并发,微信公众号:javacode2018 */ public class Demo2 { static AtomicLong count = new AtomicLong(0); public static void incr() { count.incrementAndGet(); } public static void main(String[] args) throws ExecutionException, InterruptedException { for (int i = 0; i < 10; i++) { count.set(0); m1(); } } private static void m1() throws InterruptedException { long t1 = System.currentTimeMillis(); int threadCount = 50; CountDownLatch countDownLatch = new CountDownLatch(threadCount); for (int i = 0; i < threadCount; i++) { new Thread(() -> { try { for (int j = 0; j < 1000000; j++) { incr(); } } finally { countDownLatch.countDown(); } }).start(); } countDownLatch.await(); long t2 = System.currentTimeMillis(); System.out.println(String.format("结果:%s,耗时(ms):%s", count, (t2 - t1))); } }

输出:

结果:50000000,耗时(ms):971 结果:50000000,耗时(ms):915 结果:50000000,耗时(ms):920 结果:50000000,耗时(ms):923 结果:50000000,耗时(ms):910 结果:50000000,耗时(ms):916 结果:50000000,耗时(ms):923 结果:50000000,耗时(ms):916 结果:50000000,耗时(ms):912 结果:50000000,耗时(ms):908

平均耗时:920毫秒

AtomicLong内部采用CAS的方式实现,并发量大的情况下,CAS失败率比较高,导致性能比synchronized还低一些。并发量不是太大的情况下,CAS性能还是可以的。

AtomicLong属于JUC中的原子类,还不是很熟悉的可以看一下:

方式3:LongAdder实现

先介绍一下LongAdder,说到LongAdder,不得不提的就是AtomicLong,AtomicLong是JDK1.5开始出现的,里面主要使用了一个long类型的value作为成员变量,然后使用循环的CAS操作去操作value的值,并发量比较大的情况下,CAS操作失败的概率较高,内部失败了会重试,导致耗时可能会增加。

LongAdder是JDK1.8开始出现的,所提供的API基本上可以替换掉原先的AtomicLong。LongAdder在并发量比较大的情况下,操作数据的时候,相当于把这个数字分成了很多份数字,然后交给多个人去管控,每个管控者负责保证部分数字在多线程情况下操作的正确性。当多线程访问的时,通过hash算法映射到具体管控者去操作数据,最后再汇总所有的管控者的数据,得到最终结果。相当于降低了并发情况下锁的粒度,所以效率比较高,看一下下面的图,方便理解:

代码:

package com.itsoku.chat32; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutionException; import java.util.concurrent.atomic.AtomicLong; import java.util.concurrent.atomic.LongAdder; /** * 跟着阿里p7学并发,微信公众号:javacode2018 */ public class Demo3 { static LongAdder count = new LongAdder(); public static void incr() { count.increment(); } public static void main(String[] args) throws ExecutionException, InterruptedException { for (int i = 0; i < 10; i++) { count.reset(); m1(); } } private static void m1() throws ExecutionException, InterruptedException { long t1 = System.currentTimeMillis(); int threadCount = 50; CountDownLatch countDownLatch = new CountDownLatch(threadCount); for (int i = 0; i < threadCount; i++) { new Thread(() -> { try { for (int j = 0; j < 1000000; j++) { incr(); } } finally { countDownLatch.countDown(); } }).start(); } countDownLatch.await(); long t2 = System.currentTimeMillis(); System.out.println(String.format("结果:%s,耗时(ms):%s", count.sum(), (t2 - t1))); } }

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zwjxxs.html