机器学习算法分类

机器学习起源于人工智能,可以赋予计算机以传统编程所无法实现的能力,比如飞行器的自动驾驶、人脸识别、计算机视觉和数据挖掘等。 
机器学习的算法很多。很多时候困惑人们的是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。

学习方式

将算法按照学习方式分类可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。

监督学习 

机器学习算法分类

 
在监督学习中,输入数据被称为“训练数据”,每组训练数据有一个明确的类标。在建立预测模型的时候,监督学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。 
监督式学习的常见应用场景如分类问题和回归问题。常见算法有Linear Regression,Logistic Regression,Neural Network,SVMs。

非监督学习 

机器学习算法分类

 
在非监督学习中,数据并未被特别标识,学习模型是为了推断出数据的一些内在结构。 
常见的应用场景包括关联规则的学习以及聚类等。常见算法包括K-means Clustering ,Principal Component Analysis和Anomaly Detection。

半监督学习 

机器学习算法分类

 
在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。

强化学习 

机器学习算法分类

 
在强化学习(Reinforcement Learning)中,输入数据作为对模型的反馈,不像监督模型那样,输入数据仅仅是作为一个检查模型对错的方式。在强化学习中,输入数据直接反馈到模型,模型必须对此立刻作出调整。常见的应用场景包括动态系统以及机器人控制等。常见算法包括Q-Learning以及时间差学习(Temporal difference learning)。

在企业数据应用的场景下, 人们最常用的可能就是监督式学习和非监督式学习的模型。 在图像识别等领域,由于存在大量的非标识的数据和少量的可标识数据, 目前半监督式学习是一个很热的话题。 而强化学习更多的应用在机器人控制及其他需要进行系统控制的领域。

算法类似性

回归算法 

机器学习算法分类

 
回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法。回归算法是统计机器学习的利器。在机器学习领域,人们说起回归,有时候是指一类问题,有时候是指一类算法,这一点常常会使初学者有所困惑。常见的回归算法包括:最小二乘法(Ordinary Least Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(Multivariate Adaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing)。

基于核的算法 

机器学习算法分类

 
基于核的算法中最著名的莫过于支持向量机(SVM)了。 基于核的算法把输入数据映射到一个高阶的向量空间, 在这些高阶向量空间里, 有些分类或者回归问题能够更容易的解决。 常见的基于核的算法包括:支持向量机(Support Vector Machine, SVM), 径向基函数(Radial Basis Function ,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等.

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zwjzdg.html