Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

[1]Deep learning简介

[2]Deep Learning训练过程

[3]Deep Learning模型之:CNN卷积神经网络推导和实现

[4]Deep Learning模型之:CNN的反向求导及练习

[5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

[6]Deep Learning模型之:CNN卷积神经网络(二)文字识别系统LeNet-5

[7]Deep Learning模型之:CNN卷积神经网络(三)CNN常见问题总结

1. 概述

卷积神经网络是一种特殊的深层的神经网络模型,它的特殊性体现在两个方面,一方面它的神经元间的连接是非全连接的, 另一方面同一层中某些神经元之间的连接的权重是共享的(即相同的)。它的非全连接和权值共享的网络结构使之更类似于生物 神经网络,降低了网络模型的复杂度(对于很难学习的深层结构来说,这是非常重要的),减少了权值的数量。

回想一下BP神经网络。BP网络每一层节点是一个线性的一维排列状态,层与层的网络节点之间是全连接的。这样设想一下,如果BP网络中层与层之间的节点连接不再是全连接,而是局部连接的。这样,就是一种最简单的一维卷积网络。如果我们把上述这个思路扩展到二维,这就是我们在大多数参考资料上看到的卷积神经网络。具体参看下图:

Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

上图左:全连接网络。如果我们有1000x1000像素的图像,有1百万个隐层神经元,每个隐层神经元都连接图像的每一个像素点,就有1000x1000x1000000=10^12个连接,也就是10^12个权值参数。

上图右:局部连接网络,每一个节点与上层节点同位置附件10x10的窗口相连接,则1百万个隐层神经元就只有100w乘以100,即10^8个参数。其权值连接个数比原来减少了四个数量级。

根据BP网络信号前向传递过程,我们可以很容易计算网络节点的输出。例如,对于上图中被标注为红色节点的净输入,就等于所有与红线相连接的上一层神经元节点值与红色线表示的权值之积的累加。这样的计算过程,很多书上称其为卷积。

事实上,对于数字滤波而言,其滤波器的系数通常是对称的。否则,卷积的计算需要先反向对折,然后进行乘累加的计算。上述神经网络权值满足对称吗?我想答案是否定的!所以,上述称其为卷积运算,显然是有失偏颇的。但这并不重要,仅仅是一个名词称谓而已。只是,搞信号处理的人,在初次接触卷积神经网络的时候,带来了一些理解上的误区。

卷积神经网络另外一个特性是权值共享。例如,就上面右边那幅图来说,权值共享,也就是说所有的红色线标注的连接权值相同。这一点,初学者容易产生误解。

上面描述的只是单层网络结构,前A&T Shannon Lab   的  Yann LeCun等人据此提出了基于卷积神经网络的一个文字识别系统 LeNet-5。该系统90年代就被用于银行手写数字的识别。

2、 CNN的结构

卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。 这些良好的性能是网络在有监督方式下学会的,网络的结构主要有稀疏连接和权值共享两个特点,包括如下形式的约束:
1、 特征提取。每一个神经元从上一层的局部接受域得到突触输人,因而迫使它提取局部特征。一旦一个特征被提取出来, 只要它相对于其他特征的位置被近似地保留下来,它的精确位置就变得没有那么重要了。
2 、特征映射。网络的每一个计算层都是由多个特征映射组成的,每个特征映射都是平面形式的。平面中单独的神经元在约束下共享 相同的突触权值集,这种结构形式具有如下的有益效果:a.平移不变性。b.自由参数数量的缩减(通过权值共享实现)。
3、子抽样。每个卷积层后面跟着一个实现局部平均和子抽样的计算层,由此特征映射的分辨率降低。这种操作具有使特征映射的输出对平移和其他 形式的变形的敏感度下降的作用。

卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。

Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

图:卷积神经网络的概念示范:输入图像通过和三个可训练的滤波器和可加偏置进行卷积,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个Sigmoid函数得到三个S2层的特征映射图。这些映射图再进过滤波得到C3层。这个层级结构再和S2一样产生S4。最终,这些像素值被光栅化,并连接成一个向量输入到传统的神经网络,得到输出。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zwszwz.html