算法工程师想进一步提高竞争力?向TensorFlow开源社区贡献你的代码吧

“做算法的人要熟悉算法框架源码吗?算法工程师难道不应该会使用框架建模就可以了吗?如何成为具有一定竞争力的算法工程师?”...

我经常被不同的人问类似这样的问题。坦白地说从我个人经验来看,身边算法做的不错的人对算法框架源码普遍熟悉,而且算法建模这件事在当前来看还并不能纯粹的与底层隔离,因为你会经常与计算性能,算法实现原理打交道。当然,我也见过一些比较浮躁的从业者,认为算法工程师应该只做建模不碰源码,这些人一般都只是根据网上教程跑通了个MNIST,ImageNet的例子就认为自己可以胜任算法工程师的工作了,这种人其实不是想做算法,而是不想写代码而已。算法门槛表面上在降低,可其实是不断升高的。一方面,学术界算法创新竞争越来越激烈,主要表现在AI相关的顶会变多,accept的paper也越来越多,多到根本看不过来,你现在所想到的模型创新,没准在另一家公司或者学校已经走到实验验证阶段了;另一方面,性能优化和定制的功能开发等工程能力越来越重要。现在来看,市场上做想要算法的人非常多,但到面试通过的概率很低,这也侧面说明了竞争门槛其实是比较高的。

但这也是机会。如果你是做算法的,请趁此机会提升自己的工程能力和算法领域内的影响力。How?其实很简单——为算法领域的知名开源软件贡献代码。因为我个人是TensorFlow的contributor,所以我以TensorFlow为例为大家介绍。

向TensorFlow社区贡献代码的步骤 第一步 Fork!

首先,进入TensorFlow的GitHub页面,地址如下:https://github.com/tensorflow/tensorflow ,可以看到如下页面。

算法工程师想进一步提高竞争力?向TensorFlow开源社区贡献你的代码吧

红色框内表示当前TensorFlow这个开源项目已经有1844个人贡献过代码,想要加入这个行列的coder们请努力吧,这并没有想象中那么难。因为我们无法直接对开源项目clone开发,而只能在我们自己的仓库中开发,所以我们需要点击Fork按钮,将该项目Fork到自己的GitHub仓库名下,然后我们就可以在我们自己的仓库中看到这个项目。

第二步 Clone自己的仓库

成功Fork之后,我们就可以将它Clone下来进行开发了。每次开发之前最好切出一个分支出来,避免直接在master上做修改。

算法工程师想进一步提高竞争力?向TensorFlow开源社区贡献你的代码吧

第三步 与Fork之前的开源master建立联系

自从我们Fork新项目起,我们自己仓库的master将不再与开源master有任何联系,也就是说我们自己仓库的master代码将不再随着开源master自动更新。那么如何及时更新自己的仓库呢?这需要为我们clone下来的项目添加upstream,即上游远程仓库。这非常简单,只需要一句命令即可搞定。我们需要将开源master的git地址复制下来然后添加到当前项目的,对于TensorFlow来说执行下面命令即可。

git remote add upstream git@github.com:tensorflow/tensorflow.git

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zwwfsf.html