经常有初学者在简书上和和QQ问我,自己想往大数据方向发展,该学哪些技术,学习路线是什么样的,觉得大数据很火,就业很好,薪资很高。如果自己很迷茫,为了这些原因想往大数据方向发展,也可以,那么我就想问一下,你的专业是什么,对于计算机/软件,你的兴趣是什么?是计算机专业,对操作系统、硬件、网络、服务器感兴趣?是软件专业,对软件开发、编程、写代码感兴趣?还是数学、统计学专业,对数据和数字特别感兴趣。。,我花了一个月整理了一份最适合2018年学习的大数据学习干货,从最基础的大数据集群搭建,大搜数据组件和项目实战,加群QQ群:894951460注明简书既可免费获取。
其实这就是想告诉你的大数据的三个发展方向,平台搭建/优化/运维/监控、大数据开发/设计/架构、数据分析/挖掘。请不要问我哪个容易,哪个前景好,哪个钱多。
先扯一下大数据的4V特征:
数据量大,TB->PB
数据类型繁多,结构化、非结构化文本、日志、视频、图片、地理位置等;
商业价值高,但是这种价值需要在海量数据之上,通过数据分析与机器学习更快速的挖掘出来;
处理时效性高,海量数据的处理需求不再局限在离线计算当中。
现如今,正式为了应对大数据的这几个特点,开源的大数据框架越来越多,越来越强,先列举一些常见的:
文件存储:Hadoop HDFS、Tachyon、KFS
离线计算:Hadoop MapReduce、Spark
流式、实时计算:Storm、Spark Streaming、S4、Heron
K-V、NOSQL数据库:HBase、Redis、MongoDB
资源管理:YARN、Mesos
日志收集:Flume、Scribe、Logstash、Kibana
消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ
查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid
分布式协调服务:Zookeeper
集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager
数据挖掘、机器学习:Mahout、Spark MLLib
数据同步:Sqoop
任务调度:Oozie
……
眼花了吧,上面的有30多种吧,别说精通了,全部都会使用的,估计也没几个。
就我个人而言,主要经验是在第二个方向(开发/设计/架构),且听听我的建议吧。
不论遇到什么问题,先试试搜索并自己解决。
Google首选,翻不过去的,就用百度吧。
特别是对于入门来说,官方文档永远是首选文档。
相信搞这块的大多是文化人,英文凑合就行,实在看不下去的,请参考第一步。
Hadoop可以算是大数据存储和计算的开山鼻祖,现在大多开源的大数据框架都依赖Hadoop或者与它能很好的兼容。
关于Hadoop,你至少需要搞清楚以下是什么:
Hadoop 1.0、Hadoop 2.0
MapReduce、HDFS
NameNode、DataNode
JobTracker、TaskTracker
Yarn、ResourceManager、NodeManager
自己搭建Hadoop,请使用第一步和第二步,能让它跑起来就行。
建议先使用安装包命令行安装,不要使用管理工具安装。
另外:Hadoop1.0知道它就行了,现在都用Hadoop 2.0.
HDFS目录操作命令;
上传、下载文件命令;
提交运行MapReduce示例程序;
打开Hadoop WEB界面,查看Job运行状态,查看Job运行日志。
知道Hadoop的系统日志在哪里。
MapReduce:如何分而治之;
HDFS:数据到底在哪里,什么是副本;
Yarn到底是什么,它能干什么;
NameNode到底在干些什么;
ResourceManager到底在干些什么;
请仿照WordCount例子,自己写一个(照抄也行)WordCount程序,
打包并提交到Hadoop运行。
你不会Java?Shell、Python都可以,有个东西叫Hadoop Streaming。
如果你认真完成了以上几步,恭喜你,你的一只脚已经进来了。
你知道数据库吗?你会写SQL吗?
如果不会,请学点SQL吧。
在1.6中,你写(或者抄)的WordCount一共有几行代码?
给你看看我的:
SELECT word,COUNT(1) FROM wordcount GROUP BY word;
这便是SQL的魅力,编程需要几十行,甚至上百行代码,我这一句就搞定;使用SQL处理分析Hadoop上的数据,方便、高效、易上手、更是趋势。不论是离线计算还是实时计算,越来越多的大数据处理框架都在积极提供SQL接口。
什么是Hive?官方给的解释是:
The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax.