【Bilinear interpolation】双线性插值详解(转) (2)

这样就得到所要的结果 

f \left( x, y \right)

,

f(x,y) \approx \frac{f(Q_{11})}{(x_2-x_1)(y_2-y_1)} (x_2-x)(y_2-y) + \frac{f(Q_{21})}{(x_2-x_1)(y_2-y_1)} (x-x_1)(y_2-y)

 

+ \frac{f(Q_{12})}{(x_2-x_1)(y_2-y_1)} (x_2-x)(y-y_1) + \frac{f(Q_{22})}{(x_2-x_1)(y_2-y_1)} (x-x_1)(y-y_1).

 

如果选择一个坐标系统使得 

f

 的四个已知点坐标分别为 (0, 0)、(0, 1)、(1, 0) 和 (1, 1),那么插值公式就可以化简为

f(x,y) \approx f(0,0) \, (1-x)(1-y) + f(1,0) \, x(1-y) + f(0,1) \, (1-x)y + f(1,1) xy.

 

或者用矩阵运算表示为

f(x,y) \approx \begin{bmatrix}1-x & x \end{bmatrix} \begin{bmatrix}f(0,0) & f(0,1) \\f(1,0) & f(1,1) \end{bmatrix} \begin{bmatrix}1-y \\y \end{bmatrix}

 

这种插值方法的结果通常不是线性的,线性插值的结果与插值的顺序无关。首先进行 y 方向的插值,然后进行 x 方向的插值,所得到的结果是一样的。

opencv和Matlab中的双线性插值

   这部分的前提是,你已经明白什么是双线性插值并且在给定源图像和目标图像尺寸的情况下,可以用笔计算出目标图像某个像素点的值。当然,最好的情况是你已经用某种语言实现了网上一大堆博客上原创或转载的双线性插值算法,然后发现计算出来的结果和matlab、openCV对应的resize()函数得到的结果完全不一样。

那这个究竟是怎么回事呢?

其实答案很简单,就是坐标系的选择问题,或者说源图像和目标图像之间的对应问题。

按照网上一些博客上写的,源图像和目标图像的原点(0,0)均选择左上角,然后根据插值公式计算目标图像每点像素,假设你需要将一幅5x5的图像缩小成3x3,那么源图像和目标图像各个像素之间的对应关系如下:

【Bilinear interpolation】双线性插值详解(转)

只画了一行,用做示意,从图中可以很明显的看到,如果选择右上角为原点(0,0),那么最右边和最下边的像素实际上并没有参与计算,而且目标图像的每个像素点计算出的灰度值也相对于源图像偏左偏上。

那么,让坐标加1或者选择右下角为原点怎么样呢?很不幸,还是一样的效果,不过这次得到的图像将偏右偏下。

最好的方法就是,两个图像的几何中心重合,并且目标图像的每个像素之间都是等间隔的,并且都和两边有一定的边距,这也是matlab和openCV的做法。如下图:

【Bilinear interpolation】双线性插值详解(转)

如果你不懂我上面说的什么,没关系,只要在计算对应坐标的时候改为以下公式即可,

 

int x=(i+0.5)*m/a-0.5

int y=(j+0.5)*n/b-0.5

代替

int x=i*m/a

int y=j*n/b

 

利用上述公式,将得到正确的双线性插值结果

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zwzdxs.html