从零开始学TensorFlow (2)

(后期注释:这是TensorFlow下载数据集的日志)

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz 32768/29515 [=================================] - 0s 3us/step Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz 26427392/26421880 [==============================] - 12s 0us/step Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz 8192/5148 [===============================================] - 0s 0us/step Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz 4423680/4422102 [==============================] - 2s 0us/step

(后期注释:样本的shape)

(60000, 28, 28)

(后期注释:样本有多少条,对应的label就有多少条)

60000

(后期注释:label的值是从0-9,表示有九种类别)

[9 0 0 ... 3 0 5]

(后期注释:开始训练)

Epoch 1/5 2019-02-19 14:00:46.842852: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA 60000/60000 [==============================] - 4s 65us/step - loss: 0.4995 - acc: 0.8246 Epoch 2/5 60000/60000 [==============================] - 4s 62us/step - loss: 0.3734 - acc: 0.8655 Epoch 3/5 60000/60000 [==============================] - 4s 63us/step - loss: 0.3346 - acc: 0.8788 Epoch 4/5 60000/60000 [==============================] - 4s 63us/step - loss: 0.3102 - acc: 0.8861 Epoch 5/5 60000/60000 [==============================] - 4s 63us/step - loss: 0.2918 - acc: 0.8916 10000/10000 [==============================] - 0s 36us/step

(后期注释:预测出来的精确度)

Test accuracy: 0.8514

(后期注释:选第一个样本进行预测,并对比实际的结果)

9 9

参考资料:

TensorFlow官网的例子(需要科学上网才能进..)

Tensorflow学习笔记之一:训练你的第一个神经网络——基础分类

https://www.jianshu.com/p/d4fb3a391d22

2.1总结一下使用TensorFlow的步骤

加载数据:使用dataset的api加载数据,并将数据集分成训练数据和测试数据

检查数据:检查dataSet的数据有没有问题(例如,样本的记录数、label的记录数等)

对数据预处理:对测试数据和训练数据进行归一化处理,目的:减少因为数值的大小所带来的影响(一般我们会将值都缩小在一个小的范围内)

建立神经网络:(输入层、隐藏层、输出层)

为模型定义损失函数、优化器、指标

将训练数据丢进我们的神经网络中,生成出Model

将测试数据丢进我们生成好的Model进行评估,预测出我们的准确率

三、TensorFlow介绍 3.1什么是TensorFlow

如果去Google搜关键字“TensorFlow”,那可能你会看到这么一句话:

An open source machine learning framework for everyone.

没错,TensorFlow就是一个机器学习的框架。至于框架,相信大家也比较好理解了;类比到Java,比如说我们的Spring框架给我们封装了好多好用的API,简化我们的开发(想想当年写Servlet的时候!)

TensorFlow作为机器学习的框架,同样也给我们封装了好多好用的API,能够降低学习机器学习的门槛

就拿上面的例子来说,没想到那么少的代码就可以跑机器学习的“HelloWorld”了!

至于机器学习和神经网络的相关基础,我强烈建议读读这两篇文章!通俗易懂的科普文章:

3.2TensorFlow的架构

我们可以发现上面的Demo所用的基础语言是Python,但不要认为TensorFlow就是Python的一个框架。我看到过一个比喻,觉得写得挺好的,粘贴一下:

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zygddj.html