关于特征工程的一些学习、思考与错误的纠正

特征工程的整体思路:

1. 对于特征的理解、评估

2. 特征处理:

  2.1 特征处理

    2.1.1 特征清洗

      清洗异常、采样

    2.1.2 预处理

      单特征情况:归一化、离散化、哑变量编码、缺失值填充等。数据变换例如log服从正态分布。

      多特征情况:

        降维:PCA、LDA(这个不太了解、待学习)

        特征选择:三种大方法,Filter——x与y之间的关联,Wrapper——目标函数检验(MSE),Embedded——机器学习方法,正则化、决策树、深度学习。

3. 特征监控

有效性分析和监控。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zyjgwx.html