[大数据之Spark]——快速入门

本篇文档是介绍如何快速使用spark,首先将会介绍下spark在shell中的交互api,然后展示下如何使用java,scala,python等语言编写应用。可以查看编程指南了解更多的内容。

为了良好的阅读下面的文档,最好是结合实际的练习。首先需要下载spark,然后安装hdfs,可以下载任意版本的hdfs。

Spark Shell 交互 基本操作

Spark Shell提供给用户一个简单的学习API的方式 以及 快速分析数据的工具。在shell中,既可以使用scala(运行在java虚拟机,因此可以使用java库)也可以使用python。可以在spark的bin目录下启动spark shell:

./bin/spark-shell.sh

spark操作对象是一种分布式的数据集合,叫做Resilient Distributed Dataset(RDD)。RDD可以通过hdfs文件创建,也可以通过RDD转换得来。

下面就实际操作下,看看效果。我的本地有个文件——test.txt,内容为:

hello world haha nihao

可以通过这个文件创建一个新的RDD

val textFile = sc.textFile("test.txt") textFile: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[1] at textFile at <console>:21

在Spark中,基于RDD可以作两种操作——Actions算子操作以及Transformations转换操作。

我们可以使用一些算子操作体验下:

scala> textFile.count() //RDD有用的数量 res1: Long = 2 scala> textFile.first() //RDD第一行 res3: String = hello world

再执行一些转换操作,比如使用filter转换,返回一个新的RDD集合:

scala> val lines = textFile.filter(line=>line.contains("hello")) lines: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[2] at filter at <console>:23 scala> lines.count() res4: Long = 1 scala> val lines = textFile.filter(line=>line.contains("haha")) lines: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[3] at filter at <console>:23 scala> lines.count() res5: Long = 1 scala> lines.first() res6: String = haha nihao 更多RDD操作

RDD算子和转换可以组成很多复杂的计算,比如我们想找出最多一行中单词最多的单词数量:

scala> textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b) res4: Long = 15

这个操作会把一行通过split切分计数,转变为一个整型的值,然后创建成新的RDD。reduce操作用来寻找单词最多的那一行。

用户可以在任何时候调用方法和库,可以使用Math.max()函数:

scala> import java.lang.Math import java.lang.Math scala> textFile.map(line => line.split(" ").size).reduce((a, b) => Math.max(a, b)) res5: Int = 15

一个很常见的数据操作就是map reduce,这个操作在hadoop中很常见。Spark可以轻松的实现Mapreduce任务:

scala> val wordCounts = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b) wordCounts: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[8] at reduceByKey at <console>:28

这里使用了flatMap,map以及reduceByKey等转换操作来计算每个单词在文件中的数量。为了在shell中显示,可以使用collect()触发计算:

scala> wordCounts.collect() res6: Array[(String, Int)] = Array((means,1), (under,2), (this,3), (Because,1), (Python,2), (agree,1), (cluster.,1), ...) 缓存

Spark也支持在分布式的环境下基于内存的缓存,这样当数据需要重复使用的时候就很有帮助。比如当需要查找一个很小的hot数据集,或者运行一个类似PageRank的算法。

举个简单的例子,对linesWithSpark RDD数据集进行缓存,然后再调用count()会触发算子操作进行真正的计算,之后再次调用count()就不会再重复的计算,直接使用上一次计算的结果的RDD了:

scala> linesWithSpark.cache() res7: linesWithSpark.type = MapPartitionsRDD[2] at filter at <console>:27 scala> linesWithSpark.count() res8: Long = 19 scala> linesWithSpark.count() res9: Long = 19

看起来缓存一个100行左右的文件很愚蠢,但是如果再非常大的数据集下就非常有用了,尤其是在成百上千的节点中传输RDD计算的结果。你也可以通过bin/spark-shell向集群提交任务,可以参考

独立应用

要使用spark api写一个自己的应用也很简单,可以基于scala、java、python去写一些简单的应用。

/* SimpleApp.scala */ import org.apache.spark.SparkContext import org.apache.spark.SparkContext._ import org.apache.spark.SparkConf object SimpleApp { def main(args: Array[String]) { val logFile = "YOUR_SPARK_HOME/README.md" // Should be some file on your system val conf = new SparkConf().setAppName("Simple Application") val sc = new SparkContext(conf) val logData = sc.textFile(logFile, 2).cache() val numAs = logData.filter(line => line.contains("a")).count() val numBs = logData.filter(line => line.contains("b")).count() println("Lines with a: %s, Lines with b: %s".format(numAs, numBs)) } }

注意应用需要定义main()方法。这个程序仅仅是统计文件中包含字符a和b的分别都有多少行。你可以设置YOUR_SPARK_HOME替换自己的文件目录。不像之前在shell中的例子那样,我们需要自己初始化sparkContext。

通过SparkConf构造方法创建SparkContext。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zypgyg.html