在面试环节中,面试官很喜欢问一些特别的题目,这些题目有着特殊的解法,如果回答的巧妙往往能在面试中加分。
在这些题目中,位操作(Bit Operation)就是极具魅力的一种。今天,吴师兄就来分享 LeetCode 上几道跟 Bit Operation 有关的题目。
题目一: 位 1 的个数LeetCode上第 191 号问题:编写一个函数,输入是一个无符号整数,返回其二进制表达式中数字位数为 ‘1’ 的个数。
该题比较简单,解法有挺多,有位移法、位操作法、查表法、二次查表法等方法。
观察一下 n 与 n-1 这两个数的二进制表示:对于 n-1 这个数的二进制来说,相对于 n 的二进制,它的最末位的一个 1 会变成 0,最末位一个 1 之后的 0 会全部变成 1,其它位相同不变。
比如 n = 8888,其二进制为 10001010111000
则 n - 1 = 8887 ,其二进制为 10001010110111
通过按位与操作后:n & (n-1) = 10001010110000
也就是说:通过 n&(n-1)这个操作,可以起到消除最后一个1的作用。
所以可以通过执行 n&(n-1) 操作来消除 n 末尾的 1 ,消除了多少次,就说明有多少个 1 。
代码如下:
class Solution {public:
int hammingWeight(uint32_t n) {
int cnt = 0;
while(n > 0){
cnt++;
n = n & (n - 1);
}
return cnt;
}
};
题目二:2 的幂
LeetCode上第 231 号问题:给定一个整数,编写一个函数来判断它是否是 2 的幂次方。
首先,先来分析一下 2 的次方数的二进制写法:
表格仔细观察,可以看出 2 的次方数都只有一个 1 ,剩下的都是 0 。根据这个特点,只需要每次判断最低位是否为 1 ,然后向右移位,最后统计 1 的个数即可判断是否是 2 的次方数。
代码很简单:
class Solution {public:
bool isPowerOfTwo(int n) {
int cnt = 0;
while (n > 0) {
cnt += (n & 1);
n >>= 1;
}
return cnt == 1;
}
};
该题还有一种巧妙的解法。再观察上面的表格,如果一个数是 2 的次方数的话,那么它的二进数必然是最高位为1,其它都为 0 ,那么如果此时我们减 1 的话,则最高位会降一位,其余为 0 的位现在都为变为 1,那么我们把两数相与,就会得到 0。
比如 2 的 3 次方为 8,二进制位 1000 ,那么 8 - 1 = 7,其中 7 的二进制位 0111。
图 2利用这个性质,只需一行代码就可以搞定。
class Solution {public:
bool isPowerOfTwo(int n) {
return (n > 0) && (!(n & (n - 1)));
}
};
题目三:数字范围按位与
LeetCode上第 201 号问题:给定范围 [m, n],其中 0 <= m <= n <= 2147483647,返回此范围内所有数字的按位与(包含 m, n 两端点)。
示例 :
输入: [26,30]输出: 24
首先,将 [ 26 , 30 ] 的范围数字用二进制表示出来:
11010 11011 11100 11101 11110
而输出 24 的二进制是 11000 。
可以发现,只要找到二进制的 左边公共部分 即可。
所以,可以先建立一个 32 位都是 1 的 mask,然后每次向左移一位,比较 m 和 n 是否相同,不同再继续左移一位,直至相同,然后把 m 和 mask 相与就是最终结果。
class Solution {public:
int rangeBitwiseAnd(int m, int n) {
int d = INT_MAX;
while ((m & d) != (n & d)) {
d <<= 1;
}
return m & d;
}
};
题目四:重复的 DNA 序列