kafka原理解析

两张图读懂kafka应用:

 

kafka原理解析

 

kafka原理解析

 

 

Kafka 中的术语

 broker:中间的kafka cluster,存储消息,是由多个server组成的集群。
 topic:kafka给消息提供的分类方式。broker用来存储不同topic的消息数据。
 producer:往broker中某个topic里面生产数据。
 consumer:从broker中某个topic获取数据。

Kafka 中的术语设计:


1、Broker

      中间的kafka cluster,存储消息,是由多个server组成的集群。

 

kafka原理解析

 

 


2、topic与消息
kafka将所有消息组织成多个topic的形式存储,而每个topic又可以拆分成多个partition,每个partition又由一个一个消息组成。每个消息都被标识了一个递增序列号代表其进来的先后顺序,并按顺序存储在partition中。

 

kafka原理解析

 

 


这样,消息就以一个个id的方式,组织起来。

 producer选择一个topic,生产消息,消息会通过分配策略append到某个partition末尾。
 consumer选择一个topic,通过id指定从哪个位置开始消费消息。消费完成之后保留id,下次可以从这个位置开始继续消费,也可以从其他任意位置开始消费。
上面的id在kafka中称为offset,这种组织和处理策略提供了如下好处:

 消费者可以根据需求,灵活指定offset消费。
 保证了消息不变性,为并发消费提供了线程安全的保证。每个consumer都保留自己的offset,互相之间不干扰,不存在线程安全问题。
 消息访问的并行高效性。每个topic中的消息被组织成多个partition,partition均匀分配到集群server中。生产、消费消息的时候,会被路由到指定partition,减少竞争,增加了程序的并行能力。
 增加消息系统的可伸缩性。每个topic中保留的消息可能非常庞大,通过partition将消息切分成多个子消息,并通过负责均衡策略将partition分配到不同server。这样当机器负载满的时候,通过扩容可以将消息重新均匀分配。
 保证消息可靠性。消息消费完成之后不会删除,可以通过重置offset重新消费,保证了消息不会丢失。
 灵活的持久化策略。可以通过指定时间段(如最近一天)来保存消息,节省broker存储空间。
 备份高可用性。消息以partition为单位分配到多个server,并以partition为单位进行备份。备份策略为:1个leader和N个followers,leader接受读写请求,followers被动复制leader。leader和followers会在集群中打散,保证partition高可用。
3、Partitions

       每个Topics划分为一个或者多个Partition,并且Partition中的每条消息都被标记了一个sequential id ,也就是offset,并且存储的数据是可配置存储时间的 

 

kafka原理解析

 

 


4、producer

producer生产消息需要如下参数:

 topic:往哪个topic生产消息。
 partition:往哪个partition生产消息。
 key:根据该key将消息分区到不同partition。
 message:消息。

 

 

kafka原理解析

 

 

5、consumer

传统消息系统有两种模式:

 队列
 发布订阅
kafka通过consumer group将两种模式统一处理:每个consumer将自己标记consumer group名称,之后系统会将consumer group按名称分组,将消息复制并分发给所有分组,每个分组只有一个consumer能消费这条消息。如下图:

 

 

kafka原理解析

 

 

 

于是推理出两个极端情况:

 当所有consumer的consumer group相同时,系统变成队列模式
 当每个consumer的consumer group都不相同时,系统变成发布订阅
注意:

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zywfsx.html