分布式事务综述

这篇文章将介绍什么是分布式事务,分布式事务解决什么问题,对分布式事务实现的难点,解决思路,不同场景下方案的选择,通过图解的方式进行梳理、总结和比较。

相信耐心看完这篇文章,谈到分布式事务,不再只是有“2PC”、“3PC”、“MQ的消息事务”、“最终一致性”、“TCC”等这些知识碎片,而是能够将知识连成一片,形成知识体系。

一、什么是事务

介绍分布式事务之前,先介绍什么是事务。

事务的具体定义

事务提供一种机制将一个活动涉及的所有操作纳入到一个不可分割的执行单元,组成事务的所有操作只有在所有操作均能正常执行的情况下方能提交,只要其中任一操作执行失败,都将导致整个事务的回滚。

简单地说,事务提供一种“ 要么什么都不做,要么做全套(All or Nothing)”机制。

图 1

数据库事务的 ACID 属性

事务是基于数据进行操作,需要保证事务的数据通常存储在数据库中,所以介绍到事务,就不得不介绍数据库事务的 ACID 特性。

ACID 指数据库事务正确执行的四个基本特性的缩写,包含:

原子性(Atomicity)

整个事务中的所有操作,要么全部完成,要么全部不完成,不可能停滞在中间某个环节。

事务在执行过程中发生错误,会被回滚(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。

例如:银行转账,从 A 账户转 100 元至 B 账户,分为两个步骤:

从 A 账户取 100 元。

存入 100 元至 B 账户。

这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了 100 元。

一致性(Consistency)

在事务开始之前和事务结束以后,数据库数据的一致性约束没有被破坏。

例如:现有完整性约束 A+B=100,如果一个事务改变了 A,那么必须得改变 B,使得事务结束后依然满足 A+B=100,否则事务失败。

隔离性(Isolation)

数据库允许多个并发事务同时对数据进行读写和修改的能力,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。

隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致。

例如:现有有个交易是从 A 账户转 100 元至 B 账户,在这个交易事务还未完成的情况下,如果此时 B 查询自己的账户,是看不到新增加的 100 元的。

持久性(Durability)

事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失。

图 2

简单而言,ACID 是从不同维度描述事务的特性:

原子性:事务操作的整体性。

一致性:事务操作下数据的正确性。

隔离性:事务并发操作下数据的正确性。

持久性:事务对数据修改的可靠性。

一个支持事务(Transaction)的数据库,需要具有这 4 种特性,否则在事务过程当中无法保证数据的正确性,处理结果极可能达不到请求方的要求。

什么时候使用数据库事务

在介绍完事务基本概念之后,什么时候该使用数据库事务?

简单而言,就是业务上有一组数据操作,需要如果其中有任何一个操作执行失败,整组操作全部不执行并恢复到未执行状态,要么全部成功,要么全部失败。

在使用数据库事务时需要注意,尽可能短的保持事务,修改多个不同表的数据的冗长事务会严重妨碍系统中的所有其他用户,这很有可能导致一些性能问题。

二、什么是分布式事务

介绍完事务相关基本概念之后,下面介绍分布式事务。

分布式产生背景与概念

随着互联网快速发展,微服务,SOA 等服务架构模式正在被大规模的使用,现在分布式系统一般由多个独立的子系统组成,多个子系统通过网络通信互相协作配合完成各个功能。

有很多用例会跨多个子系统才能完成,比较典型的是电子商务网站的下单支付流程,至少会涉及交易系统和支付系统。

而且这个过程中会涉及到事务的概念,即保证交易系统和支付系统的数据一致性,此处我们称这种跨系统的事务为分布式事务。

具体一点而言,分布式事务是指事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上。

举个互联网常用的交易业务为例:

图 3

上图中包含了库存和订单两个独立的微服务,每个微服务维护了自己的数据库。

在交易系统的业务逻辑中,一个商品在下单之前需要先调用库存服务,进行扣除库存,再调用订单服务,创建订单记录。

图 4

可以看到,如果多个数据库之间的数据更新没有保证事务,将会导致出现子系统数据不一致,业务出现问题。

分布式事务的难点

事务的原子性

事务操作跨不同节点,当多个节点某一节点操作失败时,需要保证多节点操作的要么什么都不做,要么做全套(All or Nothing)的原子性。

事务的一致性

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zywjfp.html