而整数集合的升级操作,既能同时保存三种不同类型的值,又可以确保升级操作只会在有需要的时候进行,达到节省内存的目的。
4 交、并、差集算法Redis 中的集合实现了交、并、差等操作,相关操作可参加 t_set.c,其中 sinterGenericCommand() 实现交集,sunionDiffGenericCommand() 实现并集和差集。
它们都能同时对多个集合进行元素。当对多个集合进行差集运算时,会先计算出第一个和第二个集合的差值,然后再与第三个集合做差集,依次类推。
接下来,我们一起来认识下三个操作的实现思路。
4.1 交集计算交集的过程大概可以分为三部分:
检查各个集合,对于不存在的集合当做空集来处理。一旦出现空集,则不用继续计算了,最终的交集就是空集。
对各个集合按照元素个数由少到多进行排序。这个排序有利于后面计算的时候从最小的集合开始,需要处理的元素个数较少。
对排序后第一个集合(也就是最小集合)进行遍历,对于它的每一个元素,依次在后面的所有集合中进行查找。只有在所有集合中都能找到的元素,才加入到最后的结果集合中。
需要注意的是,上述第 3 步在集合中进行查找,对于 intset 和 dict 的存储来说时间复杂度分别是 O(log n) 和 O(1)。但由于只有小集合才使用 intset,所以可以粗略地认为 intset 的查找也是常数时间复杂度的。
4.2 并集并集操作最简单,只要遍历所有集合,将每一个元素都添加到最后的结果集中即可。向集合中添加元素会自动去重,所以插入的时候无需检测元素是否已存在。
4.3 差集计算差集有两种可能的算法,它们的时间复杂度有所区别。
第一种算法
对第一个集合进行遍历,对于它的每一个元素,依次在后面的所有集合中进行查找。只有在所有集合中都找不到的元素,才加入到最后的结果集合中。
这种算法的时间复杂度为O(N*M),其中N是第一个集合的元素个数,M是集合数目。
第二种算法
将第一个集合的所有元素都加入到一个中间集合中。
遍历后面所有的集合,对于碰到的每一个元素,从中间集合中删掉它。
最后中间集合剩下的元素就构成了差集。
这种算法的时间复杂度为O(N),其中N是所有集合的元素个数总和。
在计算差集的开始部分,会先分别估算一下两种算法预期的时间复杂度,然后选择复杂度低的算法来进行运算。还有两点需要注意:
在一定程度上优先选择第一种算法,因为它涉及到的操作比较少,只用添加,而第二种算法要先添加再删除。
如果选择了第一种算法,那么在执行该算法之前,Redis的实现中对于第二个集合之后的所有集合,按照元素个数由多到少进行了排序。这个排序有利于以更大的概率查找到元素,从而更快地结束查找。
5 总结整数集合是集合键的底层实现之一。
整数集合以有序、无重复的方式保存集合元素。在有需要时,会根据新添加元素的类型,改变底层数组的类型。
升级操作提升了操作的灵活性,并尽可能的节约了内存。
集合可以进行交、并、差集操作。