python函数式编程之生成器

在前面的学习过程中,我们知道,迭代器有两个好处:

一是不依赖索引的统一的迭代方法 二是惰性计算,节省内存

但是迭代器也有自己的显著的缺点,那就是

不如按照索引取值方便 一次性,只能向后取值,不能向前取值

所以我们还需要学习另外一种对象,那已经生成器

1.什么是生成器

如果一个函数体内部包含yield关键字,该函数就是生成器函数,执行该函数就得到一个生成器对象

2.得到生成器

先来看下面的代码

def foo(): print("first...") yield print("second...") yield print("third...") g=foo() print(g)

根据上面生成器的定义:函数体内部包含yield关键字,则该函数就是生成器函数,则上面的函数执行结果就是一个生成器对象

执行上面的代码,查看程序执行结果

<generator object foo at 0x0000000001DF2BF8>

可以看出:上面的函数执行的结果g就是一个生成器对象,上面的函数foo就是一个生成器函数

3.生成器的内置方法

修改上面的代码,调用dir方法查看生成器中包含的方法

def foo(): print("first...") yield print("second...") yield print("third...") g=foo() print(dir(g))

打印生成器内部的方法,可以看到打印的结果

['__class__', '__del__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__lt__', '__name__', '__ne__', '__new__', '__next__', '__qualname__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'close', 'gi_code', 'gi_frame', 'gi_running', 'gi_yieldfrom', 'send', 'throw']

在这些结果中,可以看到有__iter__方法和__next__方法,由此可以判断出生成器的本质就是迭代器
,生成器是迭代器的一种

4.判断生成器是否是迭代器

修改上面的代码

def foo(): print("first...") yield print("second...") yield print("third...") g=foo() from collections import Iterable print(isinstance(g,Iterable))

查看打印结果

True

上面的两个例子都可以证明:生成器的本质是迭代器,生成器就是迭代器的一种

5.生成器的 __iter__方法和__next__方法

既然生成器的本质是迭代器,那么调用生成器的 __iter__方法和__next__方法,得到的结果会是什么呢

修改上面的代码

def foo(): print("first...") yield print("second...") yield print("third...") g=foo() print(g) print(g.__iter__()) g.__next__()

程序执行结果

<generator object foo at 0x0000000001DF2BF8> <generator object foo at 0x0000000001DF2BF8> first...

从上面的程序的执行结果可以看出:直接打印生成器g和调用生成器g.__iter__方法,得到的结果都是生成器对象g 在内存中的地址

调用g.__next__方法,实际上就是从生成器g中取出一个值,执行一次g.__next__方法,触发一次生成器的取值操作,这个过程在上面的代码中表现为foo函数的向下执行过程

从上面的程序的执行结果中可以看到,只执行了foo函数的第一个print函数,并没有执行第二个和第三个print函数。

通常对函数来说,函数开始执行以后直到return语句,函数才会停止执行

在这里执行一次g.__next__方法,foo函数中执行了一行代码,遇到yield就停止了,在这里yield好像起到了return的作用。

实际上,yield关键字的功能之一就是起到返回的作用

上面的程序执行遇到yield,本次g.__next__方法执行完毕。

在函数的执行过程中,如果函数的return语句有返回值,则函数的执行完成就得到return语句的返回值, 如果return没有定义返回值或者函数中没有定义return语句,则函数的执行结果默认为None

修改上面的代码,打印__next__方法的执行结果

def foo(): print("first...") yield print("second...") yield print("third...") g=foo() print(g.__next__())

程序执行结果

first... None

可以看到,调用__next__方法时,yield后没接任何参数时,yield默认的返回值也是None

6.yield后面接返回值

那如果在yield关键字后接一个返回值,程序执行结果会是怎么样的呢
修改上面的代码,在yield关键字后接一个返回值,看程序的执行结果

def foo(): print("first...") yield 1 print("second...") yield 2 print("third...") g=foo() print(g.__next__())

程序执行结果

first... 1

从上面的程序的执行结果可以看出,yield会把其后面接的数返回,作为__next__方法的执行结果

7.yield与return的不同点

在函数中,不管一个函数中定义了多少个return语句,函数在执行到第一个return语句的时候就会中止,其后面的语句将不会被继续执行

而对于yield来说,每调用一次__next__方法,程序会从开始向下执行,直到遇到yield语句,程序暂停,等到第二次调用__next__方法,程序会从上次暂停的地方继续向下执行,直到遇到下一个yield或者程序执行完成

在上面的例子里,是使用yield把函数foo变成一个生成器,执行foo函数时,并不会立即执行foo函数,而是先得到生成器g,当调用一次`g.__next__`方法时,函数foo开始向下执行,遇到yield时,程序暂停,当下一次调用`g.__next__`方法时,函数foo继续从上一次暂停的地方开始向下执行,直到遇到yield暂停 8.生成器的StopIteration

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zywydz.html