主流的还是使用B+树索引比较多,对于哈希索引,InnoDB是自适应哈希索引的(hash索引的创建由InnoDB存储引擎引擎自动优化创建,我们干预不了)!
参考资料:
https://blog.csdn.net/doctor_who2004/article/details/77414742
1.6聚集和非聚集索引简单概括:
聚集索引就是以主键创建的索引
非聚集索引就是以非主键创建的索引
区别:
聚集索引在叶子节点存储的是表中的数据
非聚集索引在叶子节点存储的是主键和索引列
使用非聚集索引查询出数据时,拿到叶子上的主键再去查到想要查找的数据。(拿到主键再查找这个过程叫做回表)
非聚集索引也叫做二级索引,不用纠结那么多名词,将其等价就行了~
非聚集索引在建立的时候也未必是单列的,可以多个列来创建索引。
此时就涉及到了哪个列会走索引,哪个列不走索引的问题了(最左匹配原则-->后面有说)
创建多个单列(非聚集)索引的时候,会生成多个索引树(所以过多创建索引会占用磁盘空间)
在创建多列索引中也涉及到了一种特殊的索引-->覆盖索引
我们前面知道了,如果不是聚集索引,叶子节点存储的是主键+列值
最终还是要“回表”,也就是要通过主键再查找一次。这样就会比较慢
覆盖索引就是把要查询出的列和索引是对应的,不做回表操作!
比如说:
现在我创建了索引(username,age),在查询数据的时候:select username , age from user where username = 'Java3y' and age = 20。
很明显地知道,我们上边的查询是走索引的,并且,要查询出的列在叶子节点都存在!所以,就不用回表了~
所以,能使用覆盖索引就尽量使用吧~
1.7索引最左匹配原则最左匹配原则:
索引可以简单如一个列(a),也可以复杂如多个列(a, b, c, d),即联合索引。
如果是联合索引,那么key也由多个列组成,同时,索引只能用于查找key是否存在(相等),遇到范围查询(>、<、between、like左匹配)等就不能进一步匹配了,后续退化为线性查找。
因此,列的排列顺序决定了可命中索引的列数。
例子:
如有索引(a, b, c, d),查询条件a = 1 and b = 2 and c > 3 and d = 4,则会在每个节点依次命中a、b、c,无法命中d。(很简单:索引命中只能是相等的情况,不能是范围匹配)
1.8=、in自动优化顺序不需要考虑=、in等的顺序,mysql会自动优化这些条件的顺序,以匹配尽可能多的索引列。
例子:
如有索引(a, b, c, d),查询条件c > 3 and b = 2 and a = 1 and d < 4与a = 1 and c > 3 and b = 2 and d < 4等顺序都是可以的,MySQL会自动优化为a = 1 and b = 2 and c > 3 and d < 4,依次命中a、b、c。
1.9索引总结索引在数据库中是一个非常重要的知识点!上面谈的其实就是索引最基本的东西,要创建出好的索引要顾及到很多的方面:
1,最左前缀匹配原则。这是非常重要、非常重要、非常重要(重要的事情说三遍)的原则,MySQL会一直向右匹配直到遇到范围查询(>,<,BETWEEN,LIKE)就停止匹配。
3,尽量选择区分度高的列作为索引,区分度的公式是 COUNT(DISTINCT col) / COUNT(*)。表示字段不重复的比率,比率越大我们扫描的记录数就越少。
4,索引列不能参与计算,尽量保持列“干净”。比如,FROM_UNIXTIME(create_time) = '2016-06-06' 就不能使用索引,原因很简单,B+树中存储的都是数据表中的字段值,但是进行检索时,需要把所有元素都应用函数才能比较,显然这样的代价太大。所以语句要写成 : create_time = UNIX_TIMESTAMP('2016-06-06')。
5,尽可能的扩展索引,不要新建立索引。比如表中已经有了a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。