分布近似为正态分布。
卡方分布在R中的展示:
k=10000
par(mfrow=c(2,2),mar = c(3,4,1,1))
x=rchisq(k,2)
d=density(x)
plot(d)
x=rchisq(k,5)
d=density(x)
plot(d)
x=rchisq(k,100)
d=density(x)
plot(d)
x=rchisq(k,1000)
d=density(x)
plot(d)
F分布:
F分布定义为:设X、Y为两个独立的随机变量,X服从自由度为k1的卡方分布,Y服从自由度为k2的卡方分布,这2 个独立的卡方分布被各自的自由度除以后的比率这一统计量的分布。即: F分布是服从第一自由度为k1,第二自由度为k2的分布。
k=10000
par(mfrow=c(2,2),mar = c(3,4,1,1))
x=rf(k,1, 100)
hist(x)
x=rf(k,1, 10000)
hist(x)
x=rf(k,10, 10000)
hist(x)
x=rf(k,10000, 10000)
hist(x)
t分布:
t分布曲线形态与n(确切地说与自由度v)大小有关。与标准正态分布曲线相比,自由度v越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度v愈大,t分布曲线愈接近正态分布曲线,当自由度v=∞时,t分布曲线为标准正态分布曲线。
k=10000
par(mfrow=c(2,2),mar = c(3,4,1,1))
x=rt(k,2)
hist(x)
x=rt(k,5)
hist(x)
x=rt(k,10)
hist(x)
x=rt(k,100)
hist(x)
几种分布关系图示:
i2mean=function(x,n=10){
k=length(x)
nobs=k/n
xm=matrix(x,nobs,n)
y=rowMeans(xm)
return (y)
}
par(mfrow=c(5,1),mar = c(3,4,1,1))
#Binomia
p=.05
n=100
k=10000
x=i2mean(rbinom(k, n,p))
d=density(x)
plot(d,main="Binomial")
#Poisson
lambda=10
x=i2mean(rpois(k, lambda))
d=density(x)
plot(d,main="Poisson")
#Chi-Square
x=i2mean(rchisq(k,5))
d=density(x)
plot(d,main="Chi-square")
#F
x=i2mean(rf(k,10, 10000))
d=density(x)
plot(d,main="F dist")
#t
x=i2mean(rt(k,5))
d=density(x)
plot(d,main="t dist")