筛选模型自变量
lm.new<-update(lm.sol,sqrt(.)~.)——修正原有的回归模型,将响应变量做开方变换
update(<lm>, .~. - x1)——移除变量x1后的模型
coef(lm.new)——提取回归系数
回归诊断
1、正态性(QQ图)
plot(x,which)——回归模型残差图,which=1~4分别代表画普通残差与拟合值的残差图,画正态QQ的残差图,画标准化残差的开方与拟合值的残差图,画Cook统
norm.test()——正态性检验,p-value>0.05为正态
计量的残差图
residuals()和resid()——残差
rstandard()——标准化残差
rstudent()——学生化残差
influence.measures(model)——model是由lm或者glm构成的对象,对回归诊断作总括,返回列表中包括,广义线性模型也可以使用
anova(<lm>)——简单线性模型拟合的方差分析(确定各个变量的作用)
anova(<lm1>,<lm2>)——比较两个模型(检验原假设为不同)
2、误差的独立性——car包提供Duerbin_Watson检验函数
3、线性——car包crPlots()绘制成分残差图(偏残差图)可以看因变量与自变量之间是否呈线性
4、同方差性——car包ncvTest()原假设为误差方差不变,若拒绝原假设,则说明存在异方差性
5、多重共线性——car包中的vif()函数计算VIF方差膨胀因子,一般vif>2存在多重共线性问题
异常点分析(影响分析)
hatvalues()和hat()——帽子矩阵
dffits()——DFFITS准则
cooks.distance()——Cook统计量,值越大越有可能是异常值点
covratio()——COVRATIO准则
kappa(z,exact=FALSE)——多重共线性,计算矩阵的条件数k,若k<100则认为多重共线性的程度很小;100<=k<=1000则认为存在中等程度或较强的多重共线性;若k>1000则认为存在严重的多重共线性。z是自变量矩阵(标准化,中心化的?相关矩阵),exact是逻辑变量,当其为TRUE时计算精准条件数,否则计算近似条件数。用eigen(z)计算特征值和特征向量,最小的特征值对应的特征向量为共线的系数。
step()——逐步回归,观察AIC和残差平方和最小,广义线性模型也可以使用
add1()——前进法
drop()——后退法
stepAIC(sol,direction="backward")——MASS包,可以实现逐步回归(向前、向后、向前向后)
预测
predict(<sol>,<newdataframe>,level=0.95,interval="prediction")——回归预测,sol是模型,newdataframe是待预测数据框,level设置置信度,interval="prediction"表示结果要计算置信区间
glm(formula,family=binomial(link=logit),data=data.frame)——广义线性模型,logit默认为二项分布族的链接函数,formula有两种输入方法,一种方法是输入成功和失败的次数,另一种像线性模型的公式输入方式
predict(glm(),data.frame(x=3.5),type="response")——预测广义线性回归模型,type=“response”表示结果为概率值,否则为预测值y
inv.logit()——预测值y的反logit,boot包的函数
glmnet()——正则化glm函数,glmnet包,执行结果的行数越前正则化越强。其输出结果的意义是:
1)DF是指明非0权重个数,但不包括截距项。可以认为大部分输入特征的权重为0时,这个模型就是稀疏的(sparse)。
2)%Dev就是模型的R2
3)超参数(lambda)是正则化参数。lambda越大,说明越在意模型的复杂度,其惩罚越大,使得模型所有权重趋向于0。
plot(lm(y~x),which=1:4,caption=c(“Residuals vs Fitted”,“Normal Q-Q plot”,“Scale-Location plot”,“Cook\'s distance plot”))——画回归模型残差图,which为1表示画普通残差与拟合值的残差图,2表示画正态QQ的残差图,3表示画标准化残差的开方与拟合值的残差图,4表示画Cook统计量的残差图;caption是图题的内容。