Flink 入门 (3)

Flink 入门

代替查询远程数据库,事件驱动的应用程序在本地访问其数据,从而在吞吐量和延迟方面获得更好的性能。可以定期异步地将检查点同步到远程持久存,而且支持增量同步。不仅如此,在分层架构中,多个应用程序共享同一个数据库是很常见的。因此,数据库的任何更改都需要协调,由于每个事件驱动的应用程序都负责自己的数据,因此更改数据表示或扩展应用程序所需的协调较少。

对于事件驱动的应用程序,Flink的突出特性是savepoint。保存点是一个一致的状态镜像,可以用作兼容应用程序的起点。给定一个保存点,就可以更新或调整应用程序的规模,或者可以启动应用程序的多个版本进行A/B测试。

典型的事件驱动的应用程序有:

欺诈检测

异常检测

基于规则的提醒

业务流程监控

Web应用(社交网络) 

2.2.  Data Analytics Applications

传统上的分析是作为批处理查询或应用程序对已记录事件的有限数据集执行的。为了将最新数据合并到分析结果中,必须将其添加到分析数据集中,然后重新运行查询或应用程序,结果被写入存储系统或作为报告发出。

有了复杂的流处理引擎,分析也可以以实时方式执行。流查询或应用程序不是读取有限的数据集,而是接收实时事件流,并在使用事件时不断地生成和更新结果。结果要么写入外部数据库,要么作为内部状态进行维护。Dashboard应用程序可以从外部数据库读取最新的结果,也可以直接查询应用程序的内部状态。

Apache Flink支持流以及批处理分析应用程序,如下图所示:

Flink 入门

典型的数据分析应用程序有:

电信网络质量监控

产品更新分析及移动应用实验评估

消费者技术中实时数据的特别分析

大规模图分析

2.2.  Data Pipeline Applications

提取-转换-加载(ETL)是在存储系统之间转换和移动数据的常用方法。通常,会定期触发ETL作业,以便将数据从事务性数据库系统复制到分析数据库或数据仓库。

数据管道的作用类似于ETL作业。它们转换和丰富数据,并可以将数据从一个存储系统移动到另一个存储系统。但是,它们以连续流模式运行,而不是周期性地触发。因此,它们能够从不断产生数据的源读取记录,并以低延迟将其移动到目的地。例如,数据管道可以监视文件系统目录中的新文件,并将它们的数据写入事件日志。另一个应用程序可能将事件流物化到数据库,或者增量地构建和完善搜索索引。

下图描述了周期性ETL作业和连续数据管道之间的差异:

Flink 入门

与周期性ETL作业相比,连续数据管道的明显优势是减少了将数据移至其目的地的等待时间。此外,数据管道更通用,可用于更多场景,因为它们能够连续消费和产生数据。

典型的数据管道应用程序有:

电商中实时搜索索引的建立

电商中的持续ETL 

3.  安装Flink

https://flink.apache.org/downloads.html

下载安装包,这里下载的是 flink-1.10.1-bin-scala_2.11.tgz

安装过程参考 https://ci.apache.org/projects/flink/flink-docs-release-1.10/getting-started/tutorials/local_setup.html

./bin/start-cluster.sh # Start Flink

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zyzwwx.html