python之迭代器与生成器详解

迭代器是设计模式中的一种行为模式,它提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示。python提倡使用生成器,生成器也是迭代器的一种。

python可迭代对象和迭代器 要点:

迭代即遍历,那么可迭代对象顾名思义就是可以遍历的数据类型或结构,表现在python中就是支持for循环遍历的对象。

python中有Iterable类代表可迭代对象,所有的可迭代对象都属于这个类;Iterator类表示迭代器,所有的迭代器对象都属于这个类;

可迭代对象为什么可迭代?因为可迭代对象的内部实现了迭代器这种行为模式,其在python中的表现就是__iter__魔法方法。也就是说所有python内建的数据结构如str、list等预先已在定义结构时使用__iter__方法实现了迭代器.

可迭代对象和迭代器的原理

根据上面的要点我们自定义可迭代对象:

from collections import Iterable class MyIterable(object): def __iter__(self): pass my_iter = MyIteradle() print(isinstance(my_iter,Iterable)) # 结果: True

说明python解释器是通过判断一个对象是否有__iter__魔法方法来确定是否是可迭代对象。现在我们尝试用for...in...遍历一下我们定义的可迭代对象:

my_iter = MyIter() for i in my_iter: print(i) 结果: TypeError: iter() returned non-iterator of type 'NoneType'

报错了,为什么?我们需要知道for...in...干了什么事:

python解释器遇到for...in关键字时,第一步找到in后面的my_iter对象,寻找内部的__iter__魔法方法,如果有就执行这个方法,该方法会生成一个迭代器;

第二步从迭代器中取出一个值,并将这个值赋值给i.

那么清楚了,上述我们虽然有了__iter__魔法方法,但是它并不会返回一个迭代器,从迭代器中取值这个动作也没有。那么我们需要实现一个迭代器。

为了便于理解,我们把可迭代对象想象成一个容器,里面存放了我们的数据;迭代器想象成以可迭代对象为原型,在上面加装了一种方法可以顺序访问一个可迭代对象中各个元素,for循环干的事就是获取这个迭代器并从迭代器中取数据。

记住:可迭代对象和它的迭代器是两个不同的对象。

如此我们可知,既然迭代器的原型是可迭代对象,那么自然也要有__iter__魔法方法了,可是这个方法要求返回一个迭代器,那么不无限循环了吗?我们可以让其返回它自己就可以了。另外要加一个方法实现从迭代器中取数据啊,python解释器规定这个方法为_next_.

from collections import Iterable, Iterator class MyIterator(object): def __iter__(self): return self def __next__(self): return 0 my_iterator = MyIterator() print(isinstance(my_iterator, Iterator)) for i in my_iterator: print(i) # 结果: True

没有报错,由此我们可知在python中实现了__iter__和__next__方法的对象就是迭代器。

完成了吗?并没有,看迭代器定义:提供一种方法顺序访问一个聚合对象中各个元素;顺序访问,由此有:

class MyIterator(object): def __init__(self, mylist): self.mylist = mylist # current用来记录当前访问到的位置 self.current = 0 def __next__(self): if self.current < len(self.mylist): item = self.mylist[self.current] self.current += 1 return item else: raise StopIteration def __iter__(self): return self 显性获取和使用迭代器

使用for...in...关键字,python解释器把获取迭代器和从迭代器中取值的过程全部自动完成了,如果我想手动一步步实现这个过程怎么办呢?python提供了显性的方法iter()和next().

# 两种方法可以获取一个对象的迭代器 l = [0,1,2] print(l.__iter__()) print(iter(l)) # 结果: <list_iterator object at 0x000002567EA5C518> <list_iterator object at 0x000002567EA5C518>

手动遍历

# 使用next方法取值 l = [0,1,2] ter = iter(l) print(ter) while True: try: print(next(ter)) except StopIteration: break 生成器

生成器是一类特殊的迭代器,什么意思?假如我们想自定义一个迭代器,那么我们需要手动实现__iter__和__next__方法,这显然太过麻烦,于是python为我们提供了一个简单快速的方法。

def my_iterator(mylist): current = 0 while current < len(mylist): res = mylist[current] current += 1 yield res return '遍历完成' l = [0,1,2,3] F = my_iterator(l) for i in F: print(i)

可以看到,我们把__next__方法中的逻辑抽出来,使用yield返回一个结果,这种简便的结构就是生成器了,本质上是一种快速获得迭代器的方法。

此时my_iterator的return值通过for循环是获取不到的,而是需要StopIteration捕捉。

l = [0,1,2,3] F = my_iterator(l) while True: try: next(F) except StopIteration as e: print("生成器返回值:%s"%e.value) break

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zyzwzg.html