1. Scikit-learn 是一个简单且高效的数据挖掘和数据分析工具,易上手,可以在多个上下文中重复使用。它基于NumPy, SciPy 和 matplotlib,开源,可商用(基于 BSD 许可)
提交数: 21486, 贡献者: 736, Github 链接: Scikit-learn(
2. Tensorflow 最初由谷歌机器智能科研组织中的谷歌大脑团队(Google Brain Team)的研究人员和工程师开发。该系统设计的初衷是为了便于机器学习研究,能够更快更好地将科研原型转化为生产项目。
提交数: 10466, 贡献者: 493, Github 链接: Tensorflow(https://github.com/tensorflow/tensorflow)
3. Theano 允许高效地定义、优化以及评估涉及多维数组的数学表达式. 提交数: 24108, 贡献者: 263, Github 链接: Theano(https://github.com/Theano/Theano)
4. Caffe 是一个基于表达式,速度和模块化原则创建的深度学习框架。它由伯克利视觉学习中心(BVLC, Berkeley Vision and Learning Center)和社区贡献者共同开发。 提交数: 3801, 贡献者: 215, Github 链接: Caffe(https://github.com/BVLC/caffe)
5. Gensim 是一个免费的 Python 库,它包含可扩展的统计语义,分析纯文本文档的语义结构,以及检索相似语义的文档等功能。
提交数: 2702, 贡献者: 145, Github 链接: Gensim(https://github.com/RaRe-Technologies/gensim)
6. Pylearn2 是一个机器学习库。它的大多数功能都是构建于Theano 之上的。这意味着你可以利用数学表达式自己写 Pylearn2 插件(新模型,算法等等),Theano 会为你优化这些表达式使其更加稳定,你还可以选择将其编译到后端(CPU 或 GPU)。
提交数: 7100, 贡献者: 115, Github 链接: Pylearn2()
7. Statsmodels 是一个 Python 模块,可以用来探索数据,估计统计模型,进行统计测试。对于不同类型的数据和模型估计,都有描述性统计,统计测试,绘图功能和结果统计的详细列表可用。
提交数: 8664, 贡献者: 108, Github 链接: Statsmodels(https://github.com/statsmodels/statsmodels/)
8. Shogun 是一个机器学习工具箱,它提供了很多统一高效的机器学习方法。这个工具箱允许多个数据表达,算法类和通用工具无缝组合。
提交数: 15172 贡献者: 105, Github 链接: Shogun(https://github.com/shogun-toolbox/shogun)
9. Chainer 是一个基于 Python 的独立的深度学习模型开源框架。Chainer 提供了灵活、直观且高性能的方法实现全方位的深度学习模型,包括循环神经网络 (recurrent neural networks) 和变分自编码器(variational autoencoders)这些最新的模型 。
提交数: 6298, 贡献者: 84, Github 链接: Chainer(https://github.com/pfnet/chainer)
10. NuPIC 是一个基于 HTM 算法 (Hierarchical Temporal Memory) 的开源项目。HTM 的一部分已经通过实践、测试和应用,另一部分仍在开发之中。
提交数: 6088, 贡献者: 76, Github 链接: NuPIC()
11. Neon 是 Nervana 公司一个基于 Python 的深度学习库。它易于使用且具有超高的性能。
提交数: 875, 贡献者: 47, Github 链接: Neon(https://github.com/NervanaSystems/neon)
12. Nilearn 是一个 Python 模块,用于在神经成像 (NeuroImaging) 数据上进行快速简单的统计学习。它利用 scikit-learn Python 工具箱来处理多变量统计信息,包括预测建模,分类,解码或连接分析.
提交数: 5254, 贡献者: 46, Github 链接: Nilearn()
13. Orange3 是一个同时适用于新手和数据专家的机器学习和数据可视化开源软件,支持拥有大型工具箱的交互式数据分析工作流程。
提交数: 6356, 贡献者: 40, Github 链接: Orange3(https://github.com/biolab/orange3)
14. Pymc 是一个Python 模块,它能实现贝叶斯统计模型和拟合算法,包括马尔科夫链蒙特卡罗(Markov chain Monte Carlo)算法。它非常灵活,具有可扩展性,适用于处理一系列大规模问题。
提交数: 2701, 贡献者: 37, Github 链接: Pymc(https://github.com/pymc-devs/pymc)
15. PyBrain 是一个模块化的 Python 机器学习库。它致力于为机器学习任务提供灵活易上手但功能强大的算法,和一系列用于测试和比较算法的预定义环境。
提交数: 984, 贡献者: 31, Github 链接: PyBrain()