原子性就是指该操作是不可再分的。不论是多核还是单核,具有原子性的量,同一时刻只能有一个线程来对它进行操作。
原子操作可以是一个步骤,也可以是多个步骤,但是其顺序不可以被打乱,也不可以被切割而只执行其中的一部分(不可中断性)。
将操作视作一个整体,资源在该次操作中保持一致,这是原子性的核心特征。
首先我们来看一个非原子操作的示例:
public class Counter { volatile int i = 0; public void increament() { i++; } }测试代码:
public class CouterTest { public static void main(String[] args) throws InterruptedException { final Counter counter = new Counter(); for (int i = 0; i < 6; i++) { new Thread( new Runnable() { @Override public void run() { for (int j = 0; j < 10000; j++) { counter.increament(); } System.out.println("done..."); } }) .start(); } Thread.sleep(6000L); System.out.println(counter.i); } }正确情况下以上测试代码我们启动了6个线程每个增加10000,结果输出应该是60000,但实际结果却是小于60000的,其原因就在于i++并不是原子的操作,通过反编译我们可以知道它实际上在JVM运行时是4个指令。
通过加锁的形式,可以是synchronized加锁,也可以是ReentrantLock加锁. 这种方式是通过加锁的方式使其变成串行的单线程操作,效果不是太高。
syncchronized 加锁代码示例:
public class Counter { volatile int i = 0; public synchronized void increament() { i++; } }ReentrantLock加锁代码示例:
public class Counter { volatile int i = 0; Lock lock = new ReentrantLock(); public void increament() { lock.lock(); i++; lock.unlock(); } }通过JDK提供的原子操作的API中的AtomicInteger,这种方式其底层是通过CAS操作,仍是使用多线程进行,所以效率会相对较高。
AtomicInteger代码示例:
public class Counter { AtomicInteger i= new AtomicInteger(); public void increament() { i.incrementAndGet(); } } CAS(Compare and swap)Compare and swap 比较和交换,属于硬件同步原语,处理器提供了基本内存操作的原子性保证。
CAS 操作包含三个操作数—内存位置(V),预期原值(A)和新值(B)。 如果内存位置的值与预期原值相匹配,那么处理器会自动将该位置值交换成新值,如果不匹配,即内存位置的值了变化则不做交换。
Java中的sun.misc.Unsafe类提供了compareAndSwapInt和compareAndSwapLong等几个方法实现CAS, 其代码示例如下:
JDK提供的原子操作类简介:
CAS的三大问题循环+CAS,自旋的实现让所有线程都处于高频运行,争抢CPU执行时间的状态。如果操作长时间不成功,会带来很大的CPU资源消耗
仅针对单个变量的操作,不能用于多个变量来实现原子操作
ABA问题
ABA问题