我们把交易创建流程抽象出一系列可扩展的功能点,每个功能点都可以有多个实现(具体的实现之间有组合/互斥关系)。把各个功能点按照一定流程串起来,就完成了交易创建的过程。
面临的问题
每个功能点的实现都可能会依赖外部服务。那么如何保证各个服务之间的数据是一致的呢?比如锁定优惠券服务调用超时了,不能确定到底有没有锁券成功,该如何处理?再比如锁券成功了,但是扣减库存失败了,该如何处理?
方案选型
服务依赖过多,会带来管理复杂性增加和稳定性风险增大的问题。试想如果我们强依赖 10 个服务,9 个都执行成功了,最后一个执行失败了,那么是不是前面 9 个都要回滚掉?这个成本还是非常高的。
所以在拆分大的流程为多个小的本地事务的前提下,对于非实时、非强一致性的关联业务写入,在本地事务执行成功后,我们选择发消息通知、关联事务异步化执行的方案。
消息通知往往不能保证 100% 成功;且消息通知后,接收方业务是否能执行成功还是未知数。前者问题可以通过重试解决;后者可以选用事务消息来保证。
但是事务消息框架本身会给业务代码带来侵入性和复杂性,所以我们选择基于 DB 事件变化通知到 MQ 的方式做系统间解耦,通过订阅方消费 MQ 消息时的 ACK 机制,保证消息一定消费成功,达到最终一致性。由于消息可能会被重发,消息订阅方业务逻辑处理要做好幂等保证。
所以目前只剩下需要实时同步做、有强一致性要求的业务场景了。在交易创建过程中,锁券和扣减库存是这样的两个典型场景。
要保证多个系统间数据一致,乍一看,必须要引入分布式事务框架才能解决。但引入非常重的类似二阶段提交分布式事务框架会带来复杂性的急剧上升;在电商领域,绝对的强一致是过于理想化的,我们可以选择准实时的最终一致性。
我们在交易创建流程中,首先创建一个不可见订单,然后在同步调用锁券和扣减库存时,针对调用异常(失败或者超时),发出废单消息到MQ。如果消息发送失败,本地会做时间阶梯式的异步重试;优惠券系统和库存系统收到消息后,会进行判断是否需要做业务回滚,这样就准实时地保证了多个本地事务的最终一致性。
5. 支付宝及蚂蚁金融云的分布式服务 DTS 方案
业界常用的还有支付宝的一种 xts 方案,由支付宝在 2PC 的基础上改进而来。主要思路如下,大部分信息引用自官方网站。
分布式事务服务简介
分布式事务服务 (Distributed Transaction Service, DTS) 是一个分布式事务框架,用来保障在大规模分布式环境下事务的最终一致性。DTS 从架构上分为 xts-client 和 xts-server 两部分,前者是一个嵌入客户端应用的 JAR 包,主要负责事务数据的写入和处理;后者是一个独立的系统,主要负责异常事务的恢复。
核心特性
传统关系型数据库的事务模型必须遵守 ACID 原则。在单数据库模式下,ACID 模型能有效保障数据的完整性,但是在大规模分布式环境下,一个业务往往会跨越多个数据库,如何保证这多个数据库之间的数据一致性,需要其他行之有效的策略。在 JavaEE 规范中使用 2PC (2 Phase Commit, 两阶段提交) 来处理跨 DB 环境下的事务问题,但是 2PC 是反可伸缩模式,也就是说,在事务处理过程中,参与者需要一直持有资源直到整个分布式事务结束。这样,当业务规模达到千万级以上时,2PC 的局限性就越来越明显,系统可伸缩性会变得很差。基于此,我们采用 BASE 的思想实现了一套类似 2PC 的分布式事务方案,这就是 DTS。DTS在充分保障分布式环境下高可用性、高可靠性的同时兼顾数据一致性的要求,其最大的特点是保证数据最终一致 (Eventually consistent)。
简单的说,DTS 框架有如下特性:
最终一致:事务处理过程中,会有短暂不一致的情况,但通过恢复系统,可以让事务的数据达到最终一致的目标。
协议简单:DTS 定义了类似 2PC 的标准两阶段接口,业务系统只需要实现对应的接口就可以使用 DTS 的事务功能。