排序算法的时间复杂度和空间复杂度

排序算法的时间复杂度和空间复杂度

 

其中冒泡排序加个标志,所以最好情况下是o(n)

 直接选择排序:

排序过程:

     1 、首先在所有数据中经过 n-1次比较选出最小的数,把它与第 1个数据交换,

       2、然后在其余的数据内选出排序码最小的数,与第 2个数据交换...... 依次类推,直到所有数据排完为止。

         在第i 趟排序中选出最小关键字的数据,需要做 n-i次比较。

线性排序算法 计数排序

假设:有n个数的集合,而且n个数的范围都在0~k(k = O(n))之间。

运行时间:Θ(n+k)

排序算法的时间复杂度和空间复杂度

待排序数组A如图2.1所示,需要辅助数组B(存储最后排序结果),数组C(存储元素的个数)。基于上述的假设,数组C的大小为k,C[i]表示数组A中元素i(0 <= i < k)的个数(如图2.2所示),为了保证计数排序的稳定性,数组C变化为图2.3,C[i]表示小于或者等于i的个数。

基数排序

基数排序:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。

基数排序分为两种LSD和MSD。

LSD(Least significant digital):最低有效位优先,即从右向左开始排序。

MSD(Most significant digital):最高有效位优先,即从左往右开始排序。

排序算法的时间复杂度和空间复杂度

如图3:先牌个位,然后十位,最后百位。为数组的某一位排序的时候一定需要稳定的算法。

运行时间为Θ(d(n+k))。在基数排序中排列数组各位的算法是计数排序所以运行时间为Θ(n+k),又d是数组中数的最大位数。

  桶排序

桶排序:将数组分到有限个桶子内,然后再对桶子里面的序列进行排序,运行时间Θ(n)。桶排序基于一个假设:输入的数据由随机过程构成,否则在最坏情况下都分配到一个桶子里面,如果又不满足计数排序的假设要求,那么只能使用基于比较的排序算法进行排序,运行时间就退化到Ω(nlogn)。

排序算法稳定性

排序算法稳定性:假设待排序序列中有两个元素相等,而且在排序前和排序后两个相等的元素的相对位置不变,即有 a = b,排序前a在b前面,那么排序后,a还是要在b前面。排序算法的稳定性是要看具体的算法实现,比如一般情况下,直接选择排序,快速排序,希尔排序,堆排序都不是稳定排序算法,基数排序,计数排序,归并排序,插入排序,冒泡排序都是稳定排序算法。

快速排序:A = {2, 2, 1},排序后A = {1,2,2}。

希尔排序:A = {1,2,5,4,4,7},排序后(k = 2);A = {1, 2, 4, 4, 5, 7} 。

堆排序:A = {2,2,1},排序后A = {1,2, 2}。

直接选择排序: A = {4, 4, 2, 5},排序后 A = {2,4, 4, 5}。

以上举例都不满足稳定性。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zzfpxz.html