对于一个样本,有输入和输出结果,我们的目的是优化训练我们的模型,使得对于样本输入,模型的预测输出尽可能的接近真实输出结果。现在需要一个损失函数来评估预测输出与真实结果的差距。
均方误差 回归问题样本有若干维,每一维都有一个真实值。我们要将样本的数据通过我们的模型预测也得到同样多的预测值,真实值可以看成一个向量,预测值也一样。预测值向量要在某种定义下与真实值向量是接近的。
定义\[L={1\over N}\sum\limits_{i=1}^{N}(\hat y_i-y_i)^2 \]
对于一个样本,有输入和输出结果,我们的目的是优化训练我们的模型,使得对于样本输入,模型的预测输出尽可能的接近真实输出结果。现在需要一个损失函数来评估预测输出与真实结果的差距。
均方误差 回归问题样本有若干维,每一维都有一个真实值。我们要将样本的数据通过我们的模型预测也得到同样多的预测值,真实值可以看成一个向量,预测值也一样。预测值向量要在某种定义下与真实值向量是接近的。
定义\[L={1\over N}\sum\limits_{i=1}^{N}(\hat y_i-y_i)^2 \]
内容版权声明:除非注明,否则皆为本站原创文章。