栈和堆 (2)

它们的大小依旧,依赖于语言,编译器,操作系统和架构。栈通常提前分配好了,因为栈必须是连续的内存块。语言的编译器或者操作系统决定它的大小。不要在栈上存储大块数据,这样可以保证有足够的空间不会溢出,除非出现了无限递归的情况(额,栈溢出了)或者其它不常见了编程决议。

  堆是任何可以动态分配的内存的统称。这要看你怎么看待它了,它的大小是变动的。在现代处理器中和操作系统的工作方式是高度抽象的,因此你在正常情况下不需要担心它实际的大小,除非你必须要使用你还没有分配的内存或者已经释放了的内存。

栈更快因为所有的空闲内存都是连续的,因此不需要对空闲内存块通过列表来维护。只是一个简单的指向当前栈顶的指针。编译器通常用一个专门的、快速的寄存器来实现。更重要的一点事是,随后的栈上操作通常集中在一个内存块的附近,这样的话有利于处理器的高速访问(译者注:局部性原理)。

栈和堆都是用来从底层操作系统中获取内存的。在多线程环境下每一个线程都可以有他自己完全的独立的栈,但是他们共享堆。并行存取被堆控制而不是栈。

堆包含一个链表来维护已用和空闲的内存块。在堆上新分配(用 new 或者 malloc)内存是从空闲的内存块中找到一些满足要求的合适块。这个操作会更新堆中的块链表。这些元信息也存储在堆上,经常在每个块的头部一个很小区域。

堆的增加新快通常从地地址向高地址扩展。因此你可以认为堆随着内存分配而不断的增加大小。如果申请的内存大小很小的话,通常从底层操作系统中得到比申请大小要多的内存。

申请和释放许多小的块可能会产生如下状态:在已用块之间存在很多小的空闲块。进而申请大块内存失败,虽然空闲块的总和足够,但是空闲的小块是零散的,不能满足申请的大小,。这叫做“堆碎片”。

当旁边有空闲块的已用块被释放时,新的空闲块可能会与相邻的空闲块合并为一个大的空闲块,这样可以有效的减少“堆碎片”的产生。

栈经常与 sp 寄存器(译者注:"stack pointer",了解汇编的朋友应该都知道)一起工作,最初 sp 指向栈顶(栈的高地址)。

CPU 用 push 指令来将数据压栈,用 pop 指令来弹栈。当用 push 压栈时,sp 值减少(向低地址扩展)。当用 pop 弹栈时,sp 值增大。存储和获取数据都是 CPU 寄存器的值。

当函数被调用时,CPU使用特定的指令把当前的 IP (译者注:“instruction pointer”,是一个寄存器,用来记录 CPU 指令的位置)压栈。即执行代码的地址。CPU 接下来将调用函数地址赋给 IP ,进行调用。当函数返回时,旧的 IP 被弹栈,CPU 继续去函数调用之前的代码。

当进入函数时,sp 向下扩展,扩展到确保为函数的局部变量留足够大小的空间。如果函数中有一个 32-bit 的局部变量会在栈中留够四字节的空间。当函数返回时,sp 通过返回原来的位置来释放空间。

如果函数有参数的话,在函数调用之前,会将参数压栈。函数中的代码通过 sp 的当前位置来定位参数并访问它们。

函数嵌套调用和使用魔法一样,每一次新调用的函数都会分配函数参数,返回值地址、局部变量空间、嵌套调用的活动记录都要被压入栈中。函数返回时,按照正确方式的撤销。

栈要受到内存块的限制,不断的函数嵌套/为局部变量分配太多的空间,可能会导致栈溢出。当栈中的内存区域都已经被使用完之后继续向下写(低地址),会触发一个 CPU 异常。这个异常接下会通过语言的运行时转成各种类型的栈溢出异常。(译者注:“不同语言的异常提示不同,因此通过语言运行时来转换”我想他表达的是这个含义)

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zzjdxz.html