今天去图书馆看到了一本《visual c++数字图像模式识别典型案例详解》,觉得挺好准备入门,找合适的c++编译器都找了一下午。从visual studio到eclipse for c++,要不是被屏蔽,要么是网速巨慢。然后找到了一些少有人知道的网站,下载了ide文件,但是安装时又出现问题,后面感觉懒得折腾了。但是书中的案例还是很好懂的,但是要彻底弄明白一个,估计都得花很长时间。本来还想使用C++学习计算机视觉的,但是这样的开发环境,感觉真的是折腾。
反观java的开发环境,从eclipse,到idea,从springboot到springcloud都比较完善,再看看python也是很热门,看来c++这门语言真的没落了,也许是管理不善,时间很紧迫,虽然我可能做计算机视觉,但是,时间真的不允许了。没有时间了,我java学习了一年半,还是没有多少开发项目和经验。所以还是慢慢死了计算机视觉这条路,这条路需要太长的时间。还是滚回去把我的java一套搞好。对计算机视觉敬而远之吧,你真的不要再这上面浪费时间了,有时间还不如研究一些阿里巴巴的数据库性能大赛。把一件事做到极致,你就成功了。不要觉得那些很低端,但是你却做不好。
买了一本《Python计算机视觉编程》,感觉还是Python入门CV容易些,调用PIL和matplotlib的类和方法,很容易实现图像的基本变换,非常方便。人生苦短,我用Python,这一话真的很贴切啊。现在可以对图像做卷积变换,然后观察一些特征,真的还是不错的。
-----------------------2019更新--------
想做目标检测和识别,这个方向已经很成熟了,TensorFlow有开源的detection api。路线还是应该选Python+deep learning。接下来我们来看一下detection的源码,其中有一个用于结果标注的函数:
vis_util.visualize_boxes_and_labels_on_image_array(
# 根据名字,这是一个展示结果的函数
image_np,
output_dict[\'detection_boxes\'],# 把候选的结果做成字典,思路清晰
output_dict[\'detection_classes\'],
output_dict[\'detection_scores\'],
category_index,
instance_masks=output_dict.get(\'detection_masks\'),
use_normalized_coordinates=True,
line_thickness=8)