激活函数有什么用?
提到激活函数,最想问的一个问题肯定是它是干什么用的?激活函数的主要作用是提供网络的非线性表达建模能力,想象一下如果没有激活函数,那么神经网络只能表达线性映射,此刻即便是有再多的隐藏层,其整个网络和单层的神经网络都是等价的。因此正式由于激活函数的存在,深度神经网络才具有了强大的非线性学习能力。接下来我们就来盘点一下当前有哪些流行的激活函数吧。
1. Sigmoid激活函数函数表达式:
函数图像:
导数:
优点:Sigmoid激活函数是应用范围最广的一类激活函数,具有指数形状,它在物理意义上最为接近生物神经元。另外,Sigmoid的输出是(0,1),具有很好的性质,可以被表示为概率或者用于输入的归一化等。可以看出,Sigmoid函数连续,光滑,严格单调,以(0,0.5)中心对称,是一个非常良好的阈值函数。当x趋近负无穷时,y趋近于0;x趋近于正无穷时,y趋近于1;x=0时,y=0.5。当然,在x超出[-6,6]的范围后,函数值基本上没有变化,值非常接近,在应用中一般不考虑。Sigmoid函数的导数是其本身的函数,即f′(x)=f(x)(1−f(x)),计算非常方便,也非常节省计算时间。
缺点:Sigmoid最明显的缺点就是饱和性。从曲线图中看到,其两侧的导数逐渐趋近于0,即:limx->∞f\'(x)=0 。我们将具有这种性质的激活函数叫作软饱和激活函数。具体的,饱和又可分为左饱和与右饱和。与软饱和对应的是硬饱和, 即f′(x)=0,当|x|>c,其中c为常数。sigmoid 的软饱和性,使得深度神经网络在二三十年里一直难以有效的训练,是阻碍神经网络发展的重要原因。另外,Sigmoid函数的输出均大于0,使得输出不是0均值,这称为偏移现象,这会导致后一层的神经元将得到上一层输出的非0均值的信号作为输入。
2. TanH函数表达式:
函数图像:
导数:
优点:与Sigmoid相比,它的输出均值是0,使得其收敛速度要比Sigmoid快,减少迭代次数。
缺点:该导数在正负饱和区的梯度都会接近于0值(仍然具有软饱和性),会造成梯度消失。还有其更复杂的幂运算。
3. ReLU函数表达式:
函数图像:
导数:当 x>0 时, f\'(x)=1 ,当 x<0 时 f\'(x)=0 。
优点:ReLU的全称是Rectified Linear Units,是一种AlexNet时期才出现的激活函数。可以看到,当x<0时,ReLU硬饱和,而当x>0时,则不存在饱和问题。所以,ReLU 能够在x>0时保持梯度不衰减,从而缓解梯度消失问题。这让我们能够直接以监督的方式训练深度神经网络,而无需依赖无监督的逐层预训练。
缺点:随着训练的推进,部分输入会落入硬饱和区,导致对应权重无法更新。这种现象被称为“神经元死亡”。与Sigmoid类似,ReLU的输出均值也大于0,偏移现象和神经元死亡会共同影响网络的收敛性。
4. Leaky ReLU & PReLU