上一篇《.NET-记一次架构优化实战与方案-梳理篇》整理了基本的业务知识,同时也罗列了存在的问题,本篇主要是针对任务列表的页面进行性能优化。
该篇主要涉及的是代码实现上的优化,实现上的问题是战术债务,也就是我们平常出现的各种BUG,这种问题一出直接影响业务运营与系统运作。
你永远想象不到同一条SQL相差个3.5秒钟,遍历两次就导致了 3.5秒*2次 = 7秒的耗时。具体请看下文。
二八原则有接触过性能问题的朋友应该都了解过,一般性能瓶颈都是在某行代码或者某个方法,而不是整一个代码实现流程。
例如:遍历计算、没使用到索引的SQL语句、多余重复的接口请求等等。
以二八原则的思想来考虑,80%性能耗时由20%的代码引起,因此我们处理原则就是具体定位,具体问题,针对解决。
现象描述任务列表页面问题主要体现于加载任务列表过慢的性能低效问题,就如上一篇所说的加载事件需要11秒!这种对于用户来说是不能忍受的,特别是以现状JOB触发的方式时效如此低,用户多看两次,估计就会有放弃该产品的冲动。
因此我们需要遵守3秒钟原则。
3秒钟原则现代人的生活节奏都很快,网页间的切换速度也越来越快。所谓“3秒钟原则”,就是要在极短的时间内展示重要信息,给用户留下深刻的第一印象。当然,这里的3秒只是一个象征意义上的快速浏览表述,在实际浏览网页的时候,并非真的严格遵守3秒。
因此,在设计互联网产品的页面时,用户等待时间越少,用户体验越好
优化实施任务列表页面为以信息展示的读操作为主,因此对于 I/O 密集型程序,问题主要体现于两点:
慢查询语句
多次建立查询
多次建立查询该问题主要从代码实现方式上解决,场景又分为两种情况:
信息重复查询描述:函数 A 查询了一次 Users 信息,其函数 A 的子函数 B 又进行了一次查询了一次Users 信息。
解决方案:去除子函数 B 的重复查询,并提供参数由函数 A 传入
遍历查询描述:item.foreach(item=> _userIdRespository.Get(a=>userId == item.userId) )
解决方案:先批量查询,然后在内存过滤。
var userIds = item.Select(a=>a.UserId);
var users = _userIdRespository.ToList(a=>userIds .Contains(a.userId));
Item.foreach(item=>{
Var user = users .where(a=>a.userId == item.userId)
})
以上并不是什么特别牛逼的技术,但是往往是某些地方性能瓶颈点,而导致这样的原因也只有一点,贪方便。上遍历查询的例子看出,两种写法的代码量的确差了几行,但是在实际使用场景中性能会差几倍,而且随着业务的增长其差距越发的明显。
慢查询语句对可能出现慢查询的语句的进行日志埋点记录耗时(特别是手写 SQL 与复杂视图),定位后可与专业人士沟通优化,我们有DBA,因此我只要把问题定位到就好了。
下面展示一个我在优化时候遇到一个的情况:
优化前是查询一个复杂视图,因为查询没用到索引,单次查询了3.5秒,在生产环境还有遍历2次的情况,一个7秒。
优化后将视图改成存储过程,并通过业务了解到一个用户只会查询出一条记录,重复查的情况,耗时直接降到120+毫秒
优化经历我刚完成这个需求二期上线,就收到加载慢的消息,整个优化过程并非一步到位的,主要分了三步:
第一步,能立刻可预见的,比较低级的优化了,并将列表加载改成异步,因为需求已经上线了,要先唬住用户。
第二步,把多次建立查询和部分已经在测试环境很慢的语句。优化完了之后发到了生产,快了2秒多,但是仍然不理想
第三步,给所有有可能查询慢的地方都写上日志,后来定位到了好几个慢查询,其中上面是罪魁祸首。