LR和SVM的区别 (2)

 第二,支持向量机只考虑局部的边界线附近的点,而逻辑回归考虑全局(远离的点对边界线的确定也起作用,虽然作用会相对小一些)

  SVM决策面的样本点只有少数的支持向量,当在支持向量外添加或减少任何样本点对分类决策面没有任何影响:

LR和SVM的区别

  LR中,每个样本点都会影响决策面的结果。用下图进行说明:

LR和SVM的区别

  由上得知:线性SVM不直接依赖于数据分布,分类平面不受非支持向量点影响;LR则受所有数据点的影响,如果数据不同类别strongly unbalance,一般需要先对数据做balancing

 第三,在解决非线性问题时,支持向量机采用核函数的机制,而LR通常不采用核函数的方法

  这个问题理解起来非常简单。分类模型的结果就是计算决策面,模型训练的过程就是决策面的计算过程。通过上面的第二点不同点可以了解,在计算决策面时,SVM算法里只有少数几个代表支持向量的样本参与了计算,也就是只有少数几个样本需要参与核计算。然而,LR算法里,每个样本点都必须参与决策面的计算过程,也就是说,假设我们在LR里也运用核函数的原理,那么每个样本点都必须参与核计算,这带来的计算复杂度是相当高的。所以,在具体应用时,LR很少运用核函数机制

 第四,​线性SVM依赖数据表达的距离测度,所以需要对数据先做normalization,LR不受其影响

  一个基于概率,一个基于距离!

 第五,SVM的损失函数就自带正则!!!(损失函数中的1/2||w||^2项),这就是为什么SVM是结构风险最小化算法的原因!!!而LR必须另外在损失函数上添加正则项!!!

  所谓结构风险最小化,意思就是在训练误差和模型复杂度之间寻求平衡,防止过拟合,从而达到真实误差的最小化。未达到结构风险最小化的目的,最常用的方法就是添加正则项,SVM的目标函数里居然自带正则项!!!

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zzxjjd.html