无监督学习算法

就是无监督的一种学习方法,太抽象,有一种定义(这种定义其实不够准确,无监督和监督之间界限模糊)是说如果训练集有标签的就是有监督学习,无标签的就是无监督,没有标签,意味着不知道结果。有监督学习算法可以知道一堆图片它们是狗的照片,无监督学习算法只能知道它们是一类,但这一类叫什么就不知道了。

无监督学习算法没有标签,因此训练的也往往是没有明确目标的,对于结果也可能不好说是好是坏,在本质上来说,无监督学习算法是一种概率统计的方法,在数据中可以发现一些潜在的结构。这么说还是不够清楚,举几个例子说明无监督学习方法有什么作用:

用户分类:马云说每天晚上有五十万的人会浏览淘宝,什么也不买,他也不知道为什么,那既然有如此大的流量,不能浪费,进行精准推荐,会不会效果很好呢?在庞大的用户群中,找到和你很相似的用户,也说不出来哪里相识,反正就是相似,他买过的东西你还没买过,推荐给你,你会不会就冲动了呢?

发现异常:对于网站来说,防止 DDOS 攻击就需要在巨大的请求中找到那些非法请求(广义上的非法,并非单纯指参数非法),进行丢弃不进行服务,这可能就需要无监督学习算法,找到那些和正常用户不一样的请求,也说不出来哪里不一样,反正就是不一样,直接抛弃请求,不进行服务,那攻击带来的影响就会降低一些。

表示

表示是深度学习的核心主题之一,一个经典的无监督学习任务是找到数据的最佳表示,去除那些无关紧要不影响大局或影响因子极小的因素,找到数据最核心最关键的简单表示,这里的简单表示包括低纬表示、稀疏表示和独立表示。

低纬表示:将 x 中的信息尽可能压缩在一个较小的表示中,通常会产生比原始的高维数据具有较小或较弱依赖关系的元素;

稀疏表示:将数据集嵌入到输入项大多数为零的表示中,通常会用于需要增加维数的情况,使得大部分为零的表示不会丢失很多信息;

独立表示:试图分开数据分布中变化的来源,使得表示的维度是相互独立的。

主成分分析

主成分分析(PAC)是经典的降维算法,是一种无监督学习。主成分顾名思义,主要的成分,与之相对应的就是非主要的成分。举个例子,矩阵中有些向量可以用其他的某些向量线性表示,线性相关,那这个向量有一点多余了,去除后不影响原来的空间,基于这样的思想,我们可以考虑将矩阵压缩,在减小矩阵维数的同时尽可能保留原来的信息。

对于方阵的特征分解,就是线性代数中的方法:

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zzzgpd.html