python线程池ThreadPoolExecutor用法

线程池,进程池

python的多线程并不是完全鸡肋的存在,得分情况来看。在IO密集型任务下,能提高多倍效率。在CPU密集型任务下,使用多进程也能规避GIL锁。
python3标准库concurrent.futures比原Thread封装更高,多线程concurrent.futures.ThreadPoolExecutor,多进程concurrent.futures.ProcessPoolExecutor
利用concurrent.futures.Future来进行各种便捷的数据交互,包括处理异常,都在result()中再次抛出。

模板 import time from concurrent import futures from concurrent.futures import ThreadPoolExecutor def display(args): print(time.strftime(\'[%H:%M:%S]\', time.localtime()), end=\' \') print(args) def task(n): """只是休眠""" display(\'begin sleep {}s.\'.format(n)) time.sleep(n) display(\'ended sleep {}s.\'.format(n)) def do_many_task_inorder(): """多线程 按任务发布顺序依次等待完成 """ tasks = [5, 4, 3, 2, 1] with ThreadPoolExecutor(max_workers=3) as executor: future_list = [executor.submit(task, arg) for arg in tasks] display(\'非阻塞运行\') for future in future_list: display(future) display(\'统一结束(有序)\') for future in future_list: display(future.result()) def do_many_task_disorder(): """多线程执行 先完成先显示 """ tasks = [5, 4, 3, 2, 1] with ThreadPoolExecutor(max_workers=3) as executor: future_list = [executor.submit(task, arg) for arg in tasks] display(\'非阻塞运行\') for future in future_list: display(future) display(\'统一结束(无序)\') done_iter = futures.as_completed(future_list) # generator for done in done_iter: display(done) if __name__ == \'__main__\': do_many_task_inorder() do_many_task_disorder()

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zzzgyj.html