系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力
第4章 单入单出的单层神经网络 4.0 单变量线性回归问题 4.0.1 提出问题在互联网建设初期,各大运营商需要解决的问题就是保证服务器所在的机房的温度常年保持在23摄氏度左右。在一个新建的机房里,如果计划部署346台服务器,我们如何配置空调的最大功率?
这个问题虽然能通过热力学计算得到公式,但是总会有误差。因此人们往往会在机房里装一个温控器,来控制空调的开关或者风扇的转速或者制冷能力,其中最大制冷能力是一个关键性的数值。更先进的做法是直接把机房建在海底,用隔离的海水循环降低空气温度的方式来冷却。
通过一些统计数据(称为样本数据),我们得到了表4-1。
表4-1 样本数据
样本序号 服务器数量(千台)X 空调功率(千瓦)Y1 0.928 4.824
2 0.469 2.950
3 0.855 4.643
... ... ...
在上面的样本中,我们一般把自变量X称为样本特征值,把因变量Y称为样本标签值。
这个数据是二维的,所以我们可以用可视化的方式来展示,横坐标是服务器数量,纵坐标是空调功率,如图4-1所示。
图4-1 样本数据可视化
通过对上图的观察,我们可以判断它属于一个线性回归问题,而且是最简单的一元线性回归。于是,我们把热力学计算的问题转换成为了一个统计问题,因为实在是不能精确地计算出每块电路板或每台机器到底能产生多少热量。
头脑灵活的读者可能会想到一个办法:在样本数据中,我们找到一个与346非常近似的例子,以它为参考就可以找到合适的空调功率数值了。
不得不承认,这样做是完全科学合理的,实际上这就是线性回归的解题思路:利用已有值,预测未知值。也就是说,这些读者不经意间使用了线性回归模型。而实际上,这个例子非常简单,只有一个自变量和一个因变量,因此可以用简单直接的方法来解决问题。但是,当有多个自变量时,这种直接的办法可能就会失效了。假设有三个自变量,很有可能不能够在样本中找到和这三个自变量的组合非常接近的数据,此时我们就应该借助更系统的方法了。
4.0.2 一元线性回归模型回归分析是一种数学模型。当因变量和自变量为线性关系时,它是一种特殊的线性模型。
最简单的情形是一元线性回归,由大体上有线性关系的一个自变量和一个因变量组成,模型是:
\[Y=a+bX+ε \tag{1} \]