用深度学习预测专业棋手走法

用深度学习预测专业棋手走法

 

我不擅长国际象棋。

我父亲在我年幼的时候教过我,但我猜他是那些一直让他们的孩子获胜的爸爸之一。为了弥补世界上最受欢迎的游戏之一的技能的缺乏,我做了任何数据科学爱好者会做的事情:建立一个人工智能来击败我无法击败的人。遗憾的是,它不如AlphaZero(甚至普通玩家)好。但我想看看国际象棋引擎在没有强化学习的情况下如何做,以及学习如何将深度学习模型部署到网络上。

比赛在这里!

获取数据

FICS拥有一个包含3亿场比赛,个人走法,结果以及所涉玩家评级的数据库。我下载了所有在2012年的比赛,其中至少有一名玩家超过2000 ELO。这总计约97000场比赛,有730万个走子。胜利分配是:43000次白方胜利,40000次黑方胜利和14000次平局。

极小极大算法

了解如何做一个深度学习象棋AI,我必须首先了解传统象棋AI程序。来自于极小极大算法。Minimax是“最小化最大损失”的缩写,是博弈论中决定零和博弈应如何进行的概念。

Minimax通常用于两个玩家,其中一个玩家是最大化者,另一个玩家是最小化者。机器人或使用此算法获胜的人假设他们是最大化者,而对手是最小化者。该算法还要求有一个棋盘评估函数,来衡量谁赢谁输。该数字介于-∞和∞之间。最大化者希望最大化此值,而最小化者希望最小化此值。这意味着当你,最大化者,有两个走法可以选择的时候,你将选择一个给你更高评估的那个,而最小化者将做相反的选择。这个游戏假设两个玩家都发挥最佳状态并且没有人犯任何错误。

3831669889093b7dab90a8ec4506668c34b48eb7

 

以上面的GIF为例。你,最大化者(圆圈)有三个你可以选择的走法(从顶部开始)。你直接选择的走法取决于你的对手(方块)在走子后将选择的走法。但是你的对手直接选择的走法取决于你走子后选择的走法,依此类推,直到游戏结束。玩到游戏结束会占用大量的计算资源和时间,所以在上面的例子中,选择一个深度,2。如果最小化者(最左边的方块)选择左移,你有1和-1可供选择。你选择1,因为它会给你最高分。如果最小化者选择正确的走法,则选择0,因为它更高。现在是最小化者的回合,他们选择0因为这更低。这个游戏继续进行,一直进行到所有的走子都完成或你的思维时间耗尽。对于我的国际象棋引擎来说,假设白方是最大化者,而黑方是最小化者。如果引擎是白方,则算法决定哪个分支将给出最高的最低分数,假设人们在每次走子时选择最低分数,反之亦然。为了获得更好的性能,该算法还可以与另一种算法结合使用:alpha-beta剪枝。 Alpha-beta剪枝截止系统适用于决定是否应该搜索下一个分支。

深度学习架构

我的研究始于Erik Bernhardsson关于国际象棋深度学习的优秀文章。他讲述了他如何采用传统方法制作AI下棋并将其转换为使用神经网络作为引擎。

第一步是将棋盘转换为输入层的数字形式。我借用了Erik Bernhardsson的编码策略,其中棋盘是一个热编码,每一个方块中都有一个棋子。这总计为768个元素数组(8 x 8 x 12,因为有12种棋子)。

用深度学习预测专业棋手走法

 

Bernhardsson选择将输出图层设为1表示白方胜利,-1表示黑方胜利,0表示平局。他认为游戏中的每个板位置都与结果有关。如果黑方赢了,每个棋的位置都被训练成“支持黑方”,如果白方赢了,则“支持白方棋”。这允许网络返回介于-1和1之间的值,这将告诉你该位置是否更有可能导致白赢或黑赢。

我想用稍微不同的评估函数来解决这个问题。网络是否能够看到不是白方还是黑方获胜,而是能够看到哪个走子将导致胜利?首先,我尝试将768元素的棋盘表示放入输出,其中一个位置是输入,下一个位置是输出。当然,这没有用,因为这把它变成了一个多分类问题。这导致引擎适当地选择合法走子时出现太多的错误,因为输出层中的所有768个元素可以是1或0。因此,我查阅了Barak Oshri和Nishith Khandwala的斯坦福大学论文《利用卷积神经网络预测国际象棋中的运动》,了解他们如何解决这个问题。他们训练了7个神经网络,其中1个网络是棋子选择器网络。这个网络决定哪一个方格最有可能被移动。其他六个网络专门针对每一个棋子类型,并决定将一个特定的棋子移动到哪里。如果棋子选择器选择了一个带有兵的方格,那么只有棋子神经网络会响应最有可能移动到的方格。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpwxdw.html